

A machine learning approximation algorithm for fast prediction of solutions to discrete optimization problems

JOPT 2018, Montreal, Canada

Eric Larsen - CIRRELT and Université de Montréal Sébastien Lachapelle - CIRRELT and Université de Montréal Yoshua Bengio - Montreal Institute for Learning Algorithms Emma Frejinger - CIRRELT and Université de Montréal Simon Lacoste-Julien - Montreal Institute for Learning Algorithms Andrea Lodi - École Polytechnique de Montréal

OVERVIEW OF THE PRESENTATION

- Introduction: motivation & methodology
- An application
- Experimental results
- Conclusion & future work

MOTIVATION

Want to solve discrete optimization problems when:

- The computational budget is restricted
- A subset of the problem characteristics may be unknown (which renders the problem **stochastic**)
- The application at hand may not require a fully detailed solution

THE IDEA IN BRIEF

- We use machine learning algorithms to predict solutions
- To do supervised learning, we need labeled data
 One training example: (input x, label y)
- Input vector x: a description of a problem instance
- **Label vector** y: its corresponding solution

THE IDEA IN BRIEF

1) Data generation:

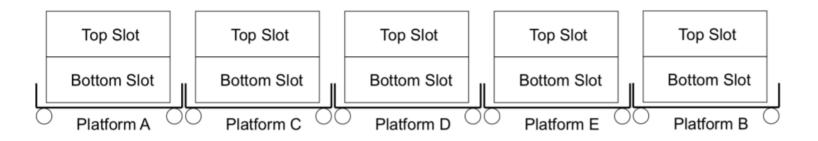
- Sample many problem instances (x)
- Use an existing solver to find their corresponding solutions (y)
- 2) Feed (x,y) couples to a ML algorithm in order to find a good mapping from x to y (prediction function, in our case a deep neural network)
- 3) Use this function for **fast prediction** in the desired application

IN THE LITERATURE

- ▶ ML as a contributor to OR, e.g. :
 - Fischetti and Fraccaro (2017): Predict objective function value at optimality in the context of offshore wind farm layout optimization problem
- ▶ ML as an alternative to OR, e.g. :
 - Vinyals et al., (2015): Supervised learning with pointer networks to solve discrete optimization problems (deterministic setting)

AN APPLICATION: LOAD PLANNING PROBLEM (LPP)

- ▶ The Load Planning Problem:
 - We have a set of containers to load on a set of railcars.
 - Each container and platform has its own characteristics (e.g. weight, size, ... etc.)
 - We must find an optimal assignment of the containers to slots on the railcars to minimize cost.



AN APPLICATION: LPP

- Many constraints related to:
 - Size of containers/railcars
 - Type of containers/railcars (e.g. some are lacking roof, some needs electricity connection)
 - Container weights
 - Railcars' weight capacity
 - Center of gravity

AN APPLICATION: LPP

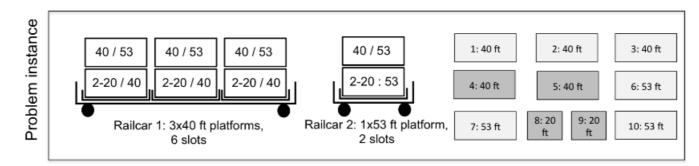
- The problem can be cast as an Integer Linear Program (ILP)
- Deterministic version can be solved using a commercial solver (see Mantovani et al. 2017)

AN APPLICATION: LPP

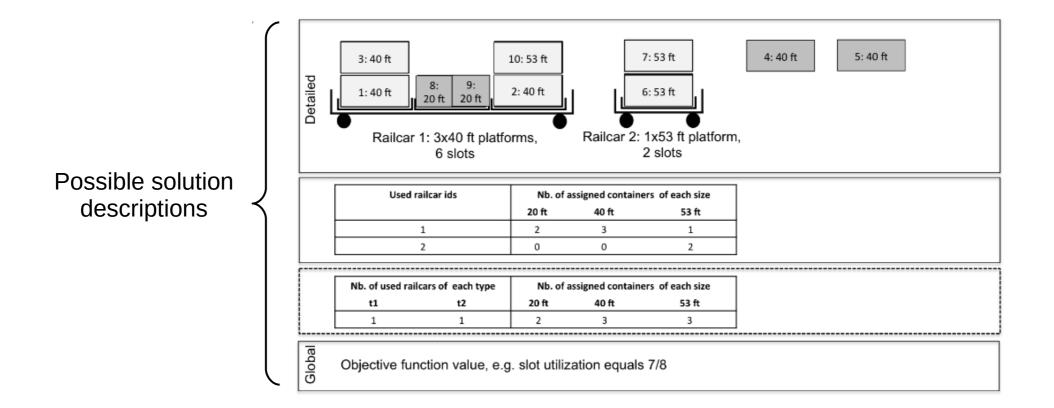
- We want to solve the LPP at booking time (containers need train reservations)
- Which means:
 - We want the computation to be quick (for real-time application)
 - We do not have all information (container weights are unknown)
 - We do not need a fully detailed description of the solution
- The methodology presented can deal with all those requirements

PROBLEM REPRESENTATION

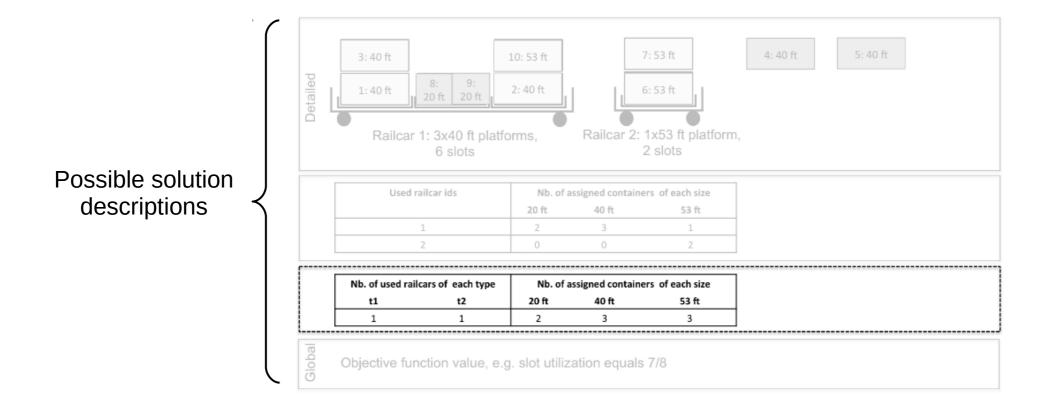
- ▶ The **problem instances** are encoded as vectors: $x \in \mathbb{N}^{12}$
- Each component corresponds to the number of railcars of each type and containers of each length available in the problem
- The container weights are not encoded



SOLUTION DESCRIPTION



SOLUTION DESCRIPTION



SOLUTION DESCRIPTIONS

- > The solution descriptions are encoded as vectors: $y \in \mathbb{N}^{12}$
- Each component corresponds to the number of railcars and containers used in the solution
- The precise assignation is not encoded

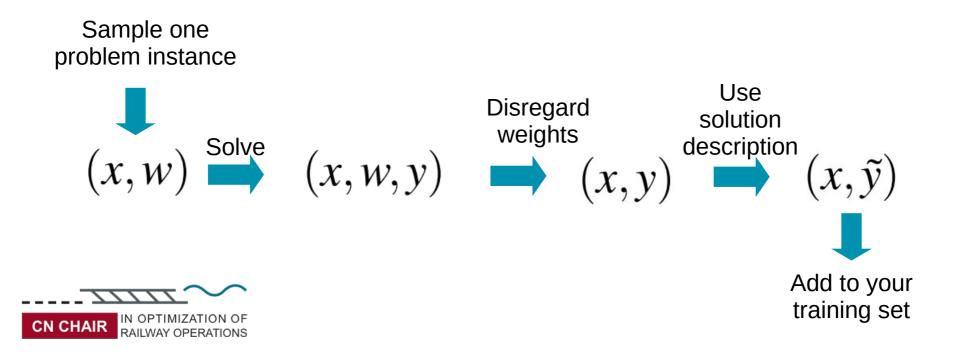
Nb. of used railcars of each type		Nb. of assigned containers of each size			
t1	t2	20 ft	40 ft	53 ft	
1	1	2	3	3	

DATA GENERATION & AGGREGATION

- The ML predictor must work with unknown input characteristics
- Aggregate over output
- Two approaches reported among five possible:
 - Aggregate through training: Model is trained to predict a <u>solution description</u>
 - Aggregate before training: Model is trained to predict a representative solution description

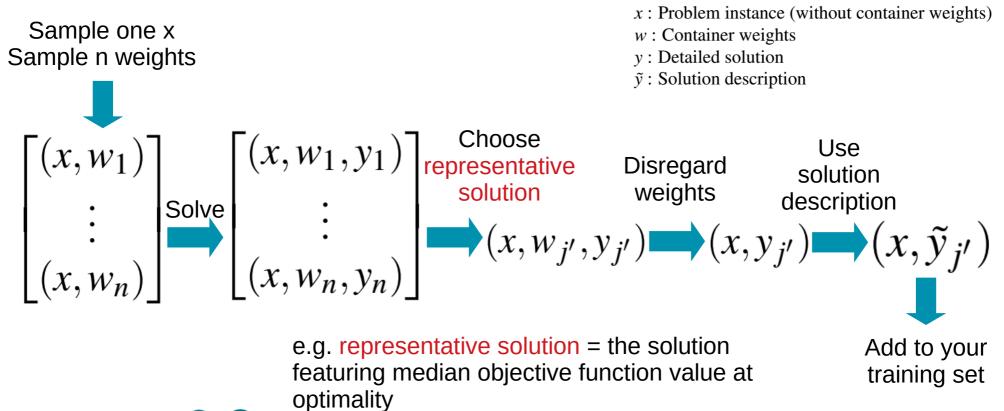
AGGREGATE THROUGH TRAINING

- Notation: x : Problem instance (without container weights)
 - w : Container weights
 - *y* : Detailed solution
 - \tilde{y} : Solution description
- To sample one training example:



AGGREGATE BEFORE TRAINING

To sample one training example (Two-stage sampling):



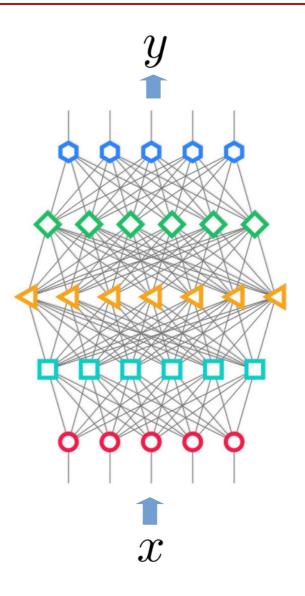
MACHINE LEARNING DETAILS

Multilayer perceptron

- pprox 7 hidden layers
- $\,\approx 500$ units per layer

Training:

- GPU
- Duration: between 2 to 10 hours
- Hyperparameter selection:
 - Early stopping
 - Random Search



FOUR DATA CLASSES

We considered datasets with varying difficulty

Class name	Description				$\# ext{ of } c$	ontainers	# of platforms
A	Simple ILP instances				[1,	150]	[1, 50]
В	More containers than A (excess demand)				[15]	1,300]	[1,50]
\mathbf{C}	More platforms than A (excess supply)				[1,	150]	[51, 100]
D	Larger and harder instances			[15]	1, 300]	[51, 100]	
					L		
We never							
train on D		Data	# instances	Percer	ntiles ti	me(s)	Computation
		class		P_5	P_{50}	P_{95}	Time
		А	$20\mathrm{M}$	0.011	0.64	2.87	
		В	$20\mathrm{M}$	0.02	1.26	3.43	
		\mathbf{C}	20M	0.72	2.59	6.03	
		D	$10\mathrm{M}$	2.64	5.44	20.89	

PREDICTING SOLUTION DESCRIPTION IS FAST

Approximates solution description

in **stochastic** setting

Computation time (s)

Data		А			D	
Percentiles	P_5	P_{50}	P_{95}	P_5	P_{50}	P_{95}
RegMLP	7.1×10^{-4}	8.3×10^{-4}	1.0×10^{-3}	7.4×10^{-4}	1.5×10^{-3}	2.3×10^{-3}
Commercial solver	0.011	0.64	2.87	2.64	5.44	20.89

Computes detailed solution in deterministic setting

PERFORMANCE EVALUATION

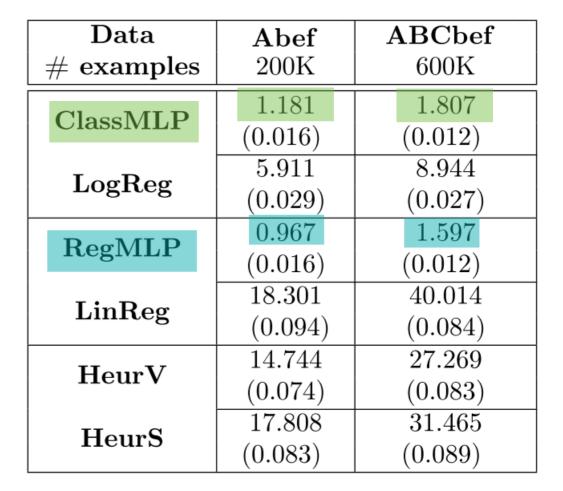
- Mean Absolute Error (MAE)
- Measured in containers and slots

$$MAE = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{12} |\hat{y}_j^{(i)} - \tilde{y}_j^{(i)}|$$

- \tilde{y} : Solution description (ground truth)
- \hat{y} : Predicted solution description
- *i* : Training example index
- *j* : Container/railcar index

EXPERIMENTAL RESULTS

- MAE on "testing data"
- Aggregation "before training"
- Heuristics are simple and don't have access to weights
- High capacity models perform well



TESTING ON HARDER PROBLEMS

- MAE on dataset D
- The models continue to perform well on
 harder problems
 they have never
 seen

Training-validation data	$\mathbf{2S-Abef}$	$\mathbf{2S-ABCbef}$	
# examples	$200 \mathrm{K}$	$600 \mathrm{K}$	
ClassMLP	NA	14.823 [9.532, 23.782]	
Classivilli		(0.061)	
\mathbf{LogReg}	NA	28.171	
LogReg		(0.048)	
RegMLP	2.852 [0.741, 9.052]	0.323 [0.323, 1.109]	
RegNILF	(0.011)	(0.052)	
LinReg	22.94	71.322	
Liniteg	(0.047)	(0.054)	
HeurV	32.098	32.098	
Heur V	(0.069)	(0.069)	
HeurS	41.792	41.792	
neurs	(0.077)	(0.077)	

 High variance between different

hyperparameters (range in bracket)

We probably got lucky... Extrapolation seems risky

CONCLUSION

- We presented a ML-based methodology that:
 - is useful to predict **solution descriptions**
 - is useful to deal with **stochasticity** (through sampling & proper aggregation)
 - shows good results on the LPP
 - has **low average cost** when the predictor is used a lot of times

FUTURE WORK

- Consider different levels of detail in the solution
 - Implies variable input/output lengths
- Experiment with different ways of dealing with missing inputs
- Data generation is costly: explore active learning

