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Summary
•Motivation: Solving integer linear programs (ILPs) when
– The computational budget is restricted
– A subset of the problem characteristics may be unknown
– The application at hand may not require a fully detailed solution

• Idea: Using a supervised machine learning (ML) algorithm to learn a
prediction function that maps problems to solution summaries.

•Application: Booking decisions for the load planning problem (LPP)
Related Work

•ML to predict objective value at optimality [1]
•ML to predict solutions to combinatorial optimization problems [4]

Contributions
•Use of ML to address computational budget limits
•Use of ML to predict solution summaries to ILPs
•Use of ML to address stochasticity in the context of OR

Overview

Methodology Outline

In short
•A set of containers and a set of railcars are given
•Aim to load highest number of containers on smallest number of railcars

Solving the LPP
The problem can be cast as an
integer linear program
The deterministic version can be
solved using a commercial solver
(see [3])

Constraints
Constraints are related to:
• container/railcar sizes and types
•container weights
• railcar weight capacities
• center of gravity

Why is the methodology useful?
•We want to get a solution summary quickly at booking time,

i.e. when the train reservation is done for the containers
•Container weights are unknown at that moment

An application: The Load Planning Problem (LPP)
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Problems under Imperfect Information
Let x̃ be a partially specified LPP instance.
The container weight information is not encoded.

e.g. x̃ =
Nb. of available railcars of each type Nb. of containers to load of each size

t1 t2 20 ft 40 ft 53 ft
1 1 2 5 3

Solution Summary Levels
Let ỹ be a summary of the solution to x.
A solution can be summarized in different ways:

Four Data Classes
Class name Description # of containers # of platforms

A Simple ILP instances [1, 150] [1, 50]
B More containers than A (excess demand) [151, 300] [1, 50]
C More platforms than A (excess supply) [1, 150] [51, 100]
D Larger and harder instances [151, 300] [51, 100]

Machine Learning Details
•Prediction function f is a multilayer perceptron (MLP)
•≈ 7 hidden layers of ≈ 500 units with ReLU activations
•Two approaches: regression (RegMLP) and classification (ClassMLP)
•Models were trained on GPUs for 2 to 10 hours
•Hyperparameter tuning: early stopping and random search

Performance Metric

We evaluate our models with the mean absolute
error (MAE) measured in containers and/or rail-
car slots.
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i : Training example index
j : Container/railcar index
sj: Number of slots on rail-
car type j for j = 1, ..., 10
(s11 = s12 = 1)

Legend:

Empirical Results
Training-validation data A A ABC A ABC

# examples 200K 20M 600K 20M 600K
Testing data A A ABC D D
ClassMLP 1.481 0.965 2.312 NA 14.831

LogReg 5.956 5.887 9.051 NA 29.568
RegMLP 1.304 0.985 2.109 4.412 2.372
LinReg 18.306 18.372 39.907 24.560 72.847
HeurV 14.733 14.753 27.24 33.737 33.737
HeurS 17.841 17.842 31.448 43.303 43.303

MAE for different models trained, validated and tested on different data sets

•ClassMLP and RegMLP successfully predict solution summaries
•RegMLP outperforms its competitors
•RegMLP performs well on data it was never trained-validated on

(yet with wide performance ranges across hyperparameter sets)
Conclusion

•We illustrated the usefulness of our methodology on the stochastic LPP
•We showed that fast solution summaries predictors can be learned via

supervised learning using deep learning methods for the LPP application
Future work:
•Comparison to a stochastic programming approach
•Active Learning (to reduce the high cost of data generation)

Experimentation with the LPP


