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Overview Experimentation with the LPP
g Summary \ . Problems under Imperfect Information .
® MOtivatiOH: SO|V|ng integer /inear progl’ams (”_PS) When Let :z' be 3 part|a”y Speciﬁed LPP instance_
— The computational budget is restricted The container weight information is not encoded.
— A subset of the pro hlem characteristics may be unknown - Nb. of available railcars of each type Nb. of containers to load of each size
, , , _ _ e.g. r — tl t2 20 ft 40 ft 53 ft
— The application at hand may not require a fully detailed solution \ 5 1 1 5 5 3
/
oldea.: FJsmg a s.uperwsec machine learning (ML) algorlthm.to learn a Solution Summary Levels
prediction function that maps problems to solution summaries. R _ h
o | o | Let ¥ be a summary of the solution to x.
| ® Application: Booking decisions for the load planning problem (LPP)J A solution can be summarized in different ways:
. Related Work § / h
e ML to predict objective value at optimality [1] g — = =
. . . . .. . " % l 1:401 I 01 | 208 ZP |i.]
e ML to predict solutions to combinatorial optimization problems [4] 5|8 Ii—l'l o _®
\_ Y, _g Railcar 1: ?éx;gtfst platforms, Railcar 2: ; x55|§t;t platform,
[ ContribUtions \ 8 Used railcar id Nb. of assigned containers of each si
e Use of ML to address computational budget limits Zg L L
e Use of ML to predict solution summaries to |LPs < Our
| @ Use of ML to address stochasticity in the context of OR ) ~ choice
Methodology Outline RN J
/[Problem distribution} Data Generation 4 Four Data Classes A
il Class name Description # of containers # of platforms
A Simple ILP instances [1, 150] [1, 50]
{2’51, g oca Zl?n} = [ Solver ] = {y1’ Gl acos yn} B More containers than A (excess demand)  [151, 300] [1, 50]
@_ | | . C More platforms than A (excess supply) [1, 150] [51, 100]
Remove information that will Produce D Larger and harder instances 151, 300] [51, 100]
. . . . . . _/
be unavailable at prediction time solution summaries : : :
1 1 . Machine Learning Details N
(&, & 7 }@ E{gl s U} e Prediction function f is a multilayer perceptron (MLP)
) > ) n , Y ety JN
{(j i ) (55 7 ) (fz'j i )} e =~ 7 hidden layers of =~ 500 units with ReLU activations
S 1y Y1 29 Y2)y -~ ny In : e
> Nt 2 e Two approaches: regression (RegMLP) and classification (ClassMLP)
[Supervised IearningJ = Prediction function f . . e Models were trained on GPUs for 2 to 10 hours
Jl Machine Learning . .
\ % o Hyperparameter tuning: early stopping and random search )
Use f in a setting where the problem information is limited to X and ) Performance Metric N
a fast prediction of Y is required Deployment | Legend:
We evaluate our models with the mean absolute
error (MAE) measured in containers and/or rail- = i: Training e>/<am|ple index
] - ontailner/ratlicar In e>§
An application: The Load Planning Problem (LPP) car slots. It Numb,e]{ of S'otslon fal"(')
car type g tor 3 = 1, ...,
1 12 - - = s519=1
, _ . \ MAE = 15 SR ) gy, | e
e A set of containers and a set of railcars are given n
N _J
o Aim to load highest number of containers on smallest number of rallcarsj ) Empirical Results .
§ Solving the LPP o ~ Training-validation data A A ABC A ABC
- . examples 200K 20M 600K 20M 600K
The problem can be cast as an Constraints are related to: T??Zst?ng pes N R s 2 X
integer linear program [ container/railcar sizes and types ClassMLP 1.481 0.965 2.312 NA 14.831
, _ LogReg 5956  5.887  9.051 NA 29.568
The deterministic version can be e container weights RegMLP 1304 0985 2109 | 4412 2372
. . - - . LinReg 18.306  18.372  39.907 | 24560  72.847
solved using a commercial solver e railcar weight capacities HourV s 1 B R I
(see [3]) | ecenter of gravity ) HeurS 17.841  17.842 31448 | 43303 43303
Whv is th thodol e MAE for different models trained, validated and tested on different data sets
y is the methodology useful | | |
g | | _ _ h e ClassMLP and RegMLP successfully predict solution summaries
e \We want to get a solution summary quickly at booking time, ReoeMLP outperf " o
. . L . e Re outperforms its competitors
i.e. when the train reservation is done for the containers & P P | | |
o Container weiehts are unknown at that moment e RegMLP performs well on data it was never trained-validated on
- 5 J \ (yet with wide performance ranges across hyperparameter sets) )
) .
. e We illustrated the usefulness of our methodology on the stochastic LPP
eferences . . . .
" . o1 . e \We showed that fast solution summaries predictors can be learned via
1| Fischetti, M. & Fraccaro, M. (2017). Using OR + Al to predict the optimal production of offshore wind parks: A preliminar ] _ _ ] _ ]
study. In Optimization and Decision Sciencf: /\/Iethodo/og/!:;s and App/isations,pvolume 217 (pp. 203—211).p5pringer.p ! Su perVISed |earn|ng using deep |earn|ng methods fOr the LPP app|lcat|0n
[2] Larsen, E., Lachapelle, S., Bengio, Y., Frejinger, E., Lacoste-Julien, S., & Lodi, A. (2018). Predicting solution summaries to
integer linear prongms under imierfect infcfrmgation with machine learning. arXiv:1807.11876. ° FUtu re Work:
[3]di\)/llir;:z;r;il; i.éel:/rlnogizlniir,ai(i; UETgr;?g(III) Crainic, T. G., Frejinger, E., & Larsen, E. (2018). The load planning problem for ° COmpariSOn to 3 stochastic programming approach
[4] Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer Networks. In Advances in Neural Information Processing Systems o Active Learning (tO reduce the hlgh cost of data generation)
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