

Predicting Solution Summaries to ILPs under Imperfect Information with Machine Learning

Eric Larsen¹ Sébastien Lachapelle² Yoshua Bengio² Emma Frejinger¹ Simon Lacoste-Julien² Andrea Lodi³ ¹CIRRELT, Université de Montréal ²Mila, Université de Montréal ³Canada Excellence Research Chair, École Polytechnique de Montréal

Overview	
• Motivation: Solving integer linear programs (ILPs) when	
 The computational budget is restricted 	
 A subset of the problem characteristics may be unknown 	
—The application at hand may not require a fully detailed solution	
• Idea: Using a supervised machine learning (ML) algorithm to learn a	
prediction function that maps problems to solution summaries.	

Experimentation with the LPP

Problems under Imperfect Information

Let \tilde{x} be a partially specified LPP instance.

The container weight information is not encoded.

	Nb. of available railcars of each type		Nb. of containers to load of each size					
e.g. $\tilde{x} =$	t1	t2	20 ft	40 ft	53 ft			
•	1	1	2	5	3			
Solution Summary Levels								
Let \tilde{u} be a summary of the solution to r								

Related Work

- ML to predict objective value at optimality [1]
- ML to predict solutions to combinatorial optimization problems [4]

Contributions

- Use of ML to address computational budget limits
- Use of ML to predict solution summaries to ILPs
- Use of ML to address stochasticity in the context of OR

A solution can be summarized in different ways:

• Aim to load highest number of containers on smallest number of railcars

Solving the LPP

The problem can be cast as an *integer linear program*

The deterministic version can be solved using a commercial solver (see [3])

<u>Constraints</u>

- Constraints are related to:
- container/railcar sizes and types
- container weights
- railcar weight capacities

• center of gravity

≈ 7 hidden layers of ≈ 500 units with ReLU activations
 Two approaches: regression (RegMLP) and classification (ClassMLP)
 Models were trained on GPUs for 2 to 10 hours
 Hyperparameter tuning: *early stopping* and *random search* Performance Metric
 We evaluate our models with the *mean absolute* error (MAE) measured in containers and/or railcar index s_j: Number of slots on railcar type *i* for *i* = 1 10

$$MAE = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{12} |f(\tilde{x}_j^{(i)}) - \tilde{y}_j^{(i)}| s_j$$

car type j for j = 1, ..., 10($s_{11} = s_{12} = 1$)

Empirical Results

Training-validation data		\mathbf{A}	ABC		ABC
# examples	200K	20M	600K	20M	600K
Testing data	A	Α	ABC	D	D
ClassMLP	1.481	0.965	2.312	NA	14.831
m LogReg	5.956	5.887	9.051	NA	29.568
RegMLP	1.304	0.985	2.109	4.412	2.372
LinReg	18.306	18.372	39.907	24.560	72.847
HeurV	14.733	14.753	27.24	33.737	33.737
HeurS	17.841	17.842	31.448	43.303	43.303

MAE for different models trained, validated and tested on different data sets

Why is the methodology useful?

• We want to get a solution summary quickly at **booking time**, i.e. when the train reservation is done for the containers

• Container weights are unknown at that moment

References

[1] Fischetti, M. & Fraccaro, M. (2017). Using OR + AI to predict the optimal production of offshore wind parks: A preliminary study. In *Optimization and Decision Science: Methodologies and Applications*, volume 217 (pp. 203–211). Springer.

[2] Larsen, E., Lachapelle, S., Bengio, Y., Frejinger, E., Lacoste-Julien, S., & Lodi, A. (2018). Predicting solution summaries to integer linear programs under imperfect information with machine learning. arXiv:1807.11876.

[3] Mantovani, S., Morganti, G., Umang, N., Crainic, T. G., Frejinger, E., & Larsen, E. (2018). The load planning problem for double-stack intermodal trains. *EJOR*, (1).

[4] Vinyals, O., Fortunato, M., & Jaitly, N. (2015). Pointer Networks. In Advances in Neural Information Processing Systems (pp. 2692–2700).

• ClassMLP and RegMLP successfully predict solution summaries

RegMLP outperforms its competitors

• RegMLP performs well on data it was never trained-validated on

(yet with wide performance ranges across hyperparameter sets)

Conclusion

• We illustrated the usefulness of our methodology on the stochastic LPP

• We showed that fast solution summaries predictors can be learned via supervised learning using deep learning methods for the LPP application

Future work:

- Comparison to a stochastic programming approach
- Active Learning (to reduce the high cost of data generation)