

Partial Disentanglement via Mechanism Sparsity

Sébastien Lachapelle¹, Simon Lacoste-Julien^{1,2}

¹Mila, Université de Montréal ²Canada CIFAR AI Chair

CONTRIBUTIONS

- [7] showed how mechanism sparsity regularization can identify causal latent factors from high-dimensional observations based on the assumption that the ground-truth causal graph connecting the latent factors is typically sparse [1, 3].
 - Objects usually interact sparsely with each others.
 - Actions typically affect only a few factors of variations.
- [7] introduced a graphical criterion guaranteeing complete disentanglement.
- This work generalizes [7] by dropping the graphical criterion and instead characterizes qualitatively how disentangled the learned representation is expected to be given the specific form of the ground-truth causal graph.
- To do so, we introduce a novel equivalence relation over models we call **consistency**.
- This equivalence relation captures which variables are expected to remain entangled and

2- IDENTIFIABILITY RESULT

Theorem (Partial disentanglement via mechanism sparsity) Suppose we have two models with parameters $\theta = (\mathbf{f}, \mu, G)$ and $\hat{\theta} = (\hat{\mathbf{f}}, \hat{\mu}, \hat{G})$ representing the same distribution, i.e. $\mathbb{P}_{X \leq T \mid a < T; \hat{\theta}} = \mathbb{P}_{X \leq T \mid a < T; \hat{\theta}}$ for all $a^{< T}$. Assume

- 1. [Variability] The mechanisms λ_i are "sufficiently complex" (see paper)
- 2. **[Sparsity]** $||\hat{G}||_0 \le ||G||_0$

Then, $\hat{\theta}$ is consistent with θ , i.e. $\theta \sim_{con} \hat{\theta}$ (see next definition).

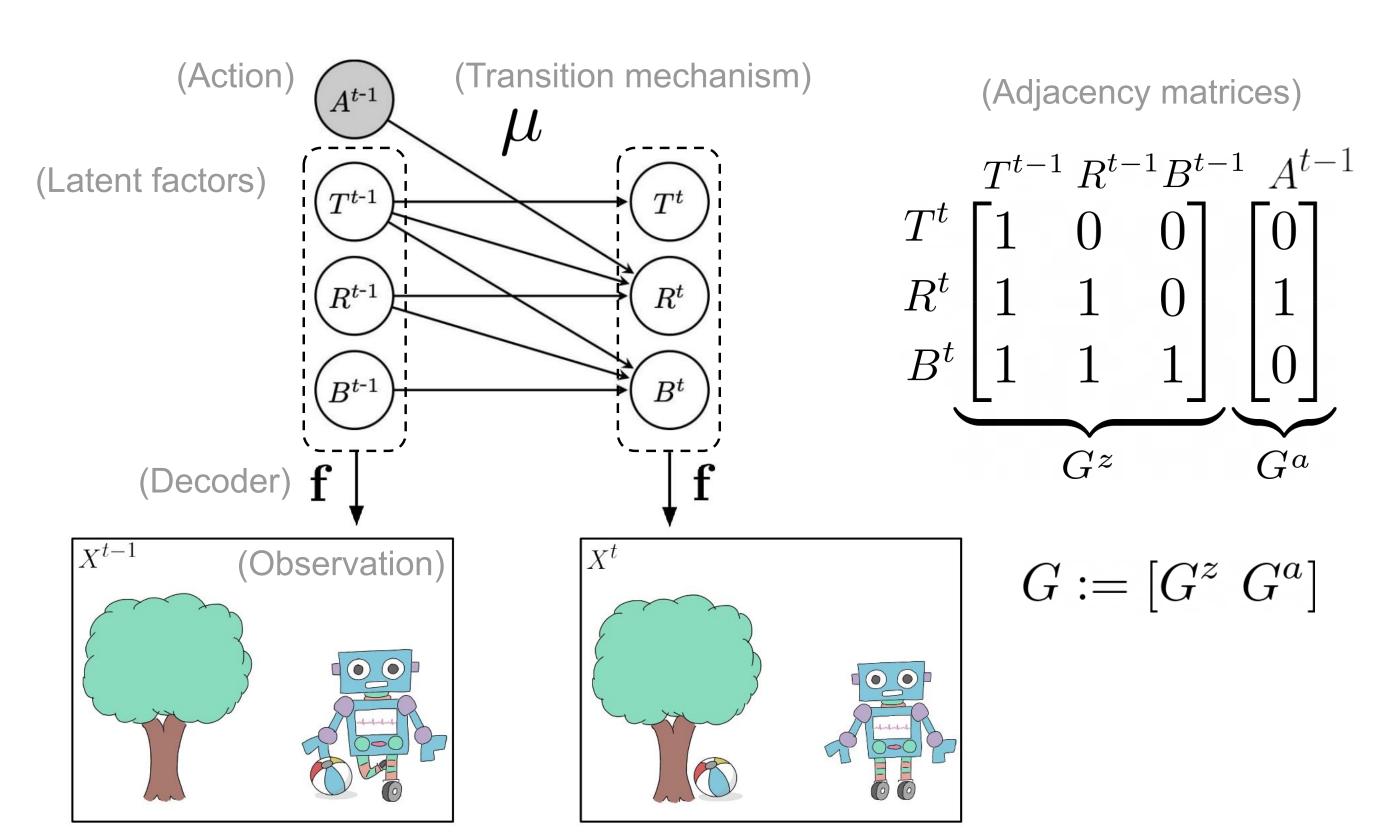
Definition (\sim_{con} -equivalence) Two models $\theta := (\mathbf{f}, \mu, G)$ and $\tilde{\theta} := (\tilde{\mathbf{f}}, \tilde{\mu}, \tilde{G})$ are consistent, denoted $\theta \sim_{con} \tilde{\theta}$, if and only if there exists a permutation matrix P such that

- 1. $G^z = P^{ op} \tilde{G}^z P$ and $G^a = P^{ op} \tilde{G}^a$, and
- 2. $\mathbf{f}^{-1} \circ \hat{\mathbf{f}}(z) = CP^{\top}$, where the matrix C is invertible, G^z -consistent, $(G^z)^{\top}$ -

- which are not, hence the term partial disentanglement.
- The graphical criterion of [7] can be derived from our more general theory.
- We follow [7] by leveraging VAE and gumbel-sigmoid masks, but replace sparsity regularization by a **sparsity constraint**, as argued for in [2].

1- BACKGROUND

• Illustrations of our theory with synthetic data.



consistent and G^a -consistent (see next definition).

Definition (*S***-consistency)** Given a binary matrix $S \in \{0,1\}^{m \times n}$, a matrix $C \in \mathbb{R}^{m \times m}$ is *S***-consistent** when

$$\forall i, j, \ [\mathbb{1} - S(\mathbb{1} - S)^{\top}]_{i,j}^{+} = 0 \implies C_{i,j} = 0, \qquad (1)$$

where $[\cdot]^+ := \max\{0, \cdot\}$ and $\mathbb{1}$ is a matrix filled with ones.

- We showed that, for any binary matrix S, the set of invertible S-consistent matrices forms a group under matrix multiplication. This allowed us to show that the relation \sim_{con} is indeed an equivalence relation.
- Recall the graphical criterion of [7]: $\forall 1 \leq i \leq d_z, \left(\bigcap_{j \in \mathbf{Ch}_i^z} \mathbf{Pa}_j^z\right) \cap \left(\bigcap_{j \in \mathbf{Pa}_i^z} \mathbf{Ch}_j^z\right) \cap \left(\bigcap_{\ell \in \mathbf{Pa}_i^a} \mathbf{Ch}_\ell^a\right) = \{i\},\$

where \mathbf{Pa}_i^z and \mathbf{Ch}_i^z are the sets of parents and children of node z_i in G^z , respectively, while \mathbf{Ch}_{ℓ}^a is the set of children of a_{ℓ} in G^a .

• We proved that if the ground-truth graph happens to satisfy the criterion of [7] (above), the matrix *C* must be diagonal i.e. we have complete disentanglement.

4- EXPERIMENTS

- 4.1 Learning with VAE + sparsity constraint
- We use the VAE framework [6] with a variational approximate posterior given by $q(z^{\leq T} \mid x^{\leq T}, a^{< T}) := \prod_{t=1}^{T} q(z^t \mid x^t).$

Figure 1: Model in the context of the motivating example of [7]

1.1 Model (following [7])

• We observe sequences $\{X^t\}_{t=1}^T$ and $\{A^t\}_{t=1}^T$ and have

 $X^t = \mathbf{f}(Z^t) + \text{noise}^t$ with $\mathbf{f} : \mathbb{R}^{d_z} \to \mathcal{X} \subset \mathbb{R}^{d_x}$ (diffeomorphism and $d_z \leq d_x$)

• We follow [5] and assume the Z_i^t are independent given $Z^{<t}$ and $A^{<t}$

$p(z^t \mid z^{<t}, a^{<t}) = \prod_{i=1}^{d_z} p(z_i^t \mid z^{<t}, a^{<t}),$

and, for simplicity, assume each factor is Gaussian with a fixed variance i.e.

$p(z_i^t \mid z^{<t}, a^{<t}) = \mathcal{N}(z_i^t; \mu_i(G_i^z \odot z^{<t}, G_i^a \odot a^{<t}), 1).$

Paper is more general and applies to the **exponential family** with 1d sufficient statistics.

- μ_i 's are the *transition functions/mechanisms* (e.g. parameterized by a NN).
- $G = [G^z G^a]$ is the adjacency matrix of the causal graph.
- Learnable parameters are $\theta := (\mathbf{f}, \mu, G)$

1.2 Anatomy of identifiability results

• Postulate a family of distributions over observations \mathbb{P}_{θ} parameterized by θ

• This yields the following evidence lower bound (ELBO): $\log p(x^{\leq T} | a^{< T}) \geq 1$

 $\sum_{t=1}^{T} \mathbb{E}_{Z^{t} \sim q(\cdot | x^{t})} [\log p(x^{t} | Z^{t})] + \mathbb{E}_{Z^{t-1} \sim q(\cdot | x^{t-1})} KL(q(Z^{t} | x^{t}) || p(Z^{t} | Z^{t-1}, a^{t-1})).$

- We model the mechanisms $\boldsymbol{\lambda}_i$ with MLPs
- Instead of adding a sparsity penalty as in [7], we add sparsity constraint, following [2].
- The binary masks G^z and G^a are treated as random to allow for optimization via SGD using the **Gumbel-Softmax trick** [8, 4].

.2	Exper	on	
	$\hat{P}^{\top}\hat{G}^{z}\hat{P}$	$\hat{L}\hat{P}$	
	- 1.00 0.11 0.00 0.00 0.01 0.00 0.00 0.0	-0.91 0.26 0.01 0.01 0.09 0.01 0.02 0.01 0.02 0.03	C
	1.00 1.00 0.01 0.02 1.00 1.00 0.00 0.00	0.18 1.00 0.01 0.00 0.04 0.03 0.01 0.00 0.02 0.02 0.00 0.00 0.71 0.71 0.00 0.00 0.00 0.00	2
	0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00	0.00 0.00 0.66 0.73 0.00 0.00 0.00 0.00 0.00 0.00	
	- 0.00 0.00 0.00 0.00 <mark>1.00 1.00</mark> 0.00 0.00 0.00 0.00	- 0.00 0.00 0.00 0.00 <mark>0.80 0.58</mark> 0.01 0.00 0.00 0.00	
	⁸ 0.01 0.00 0.00 0.00 <mark>1.00 1.00</mark> 0.00 0.00 0.00 0.00	0.01 0.00 0.00 0.00 <mark>0.55</mark> 0.83 0.00 0.00 0.00 0.00	
	-0.00 0.00 0.00 0.00 0.00 0.00 <mark>1.00 1.00</mark> 0.00 0.00	-0.01 0.00 0.00 0.00 0.00 0.00 <mark>0.84 0.53</mark> 0.00 0.00	
	0.00 0.00 0.00 0.00 0.00 0.00 <mark>1.00 1.00</mark> 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 <mark>0.47</mark> 0.88 0.00 0.00	•
	- <mark>1.00 1.00</mark> 0.00 0.01 <mark>1.00 1.00</mark> 0.00 0.00 <mark>1.00 1.00</mark>	- 0.07 0.06 0.01 0.01 0.04 0.05 0.00 0.00 <mark>0.74 0.66</mark>	
	1.00 1.00 0.01 0.06 1.00 1.00 0.01 0.01	0.10 0.13 0.00 0.02 0.03 0.03 0.01 0.01 0.55 0.85	•
$\langle \cdot \rangle$	Z^t-1		
(<i>a</i>)	Ground-truth $G^z_{(2)}$	Sparsity pattern of C (Def. 7)	Y
	- 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.0	- <mark>1.00 1.00</mark> 0.00 0.00 0.00 0.00 0.00 1.00 1	
	<mark>1.00 1.00</mark> 0.00 0.00 0.00 0.00 0.00 0.00	<mark>1.00 1.00</mark> 0.00 0.00 0.00 0.00 0.00 0.00	
	-0.00 0.00 <mark>1.00 1.00</mark> 0.00 0.00 0.00 0.00 0.00 0.00	-0.00 0.00 <mark>1.00 1.00</mark> 0.00 0.00 0.00 0.00 0.00	

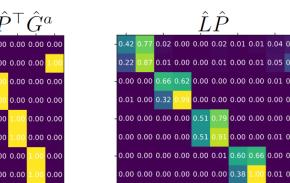
4

(b)

[8]

n sy	nthetic	data	$d_x = 20$	$0, d_z = 10$
Sparsity	SHD (# edge errors)	MCC (permutation eq.)	R_{con} (consistency)	R (linear eq.)
No Yes	 5.6±5.0	.68±.03 .86 ± .02	.78±.02 .99 ±.01	.98±.00 1.0 ±.00

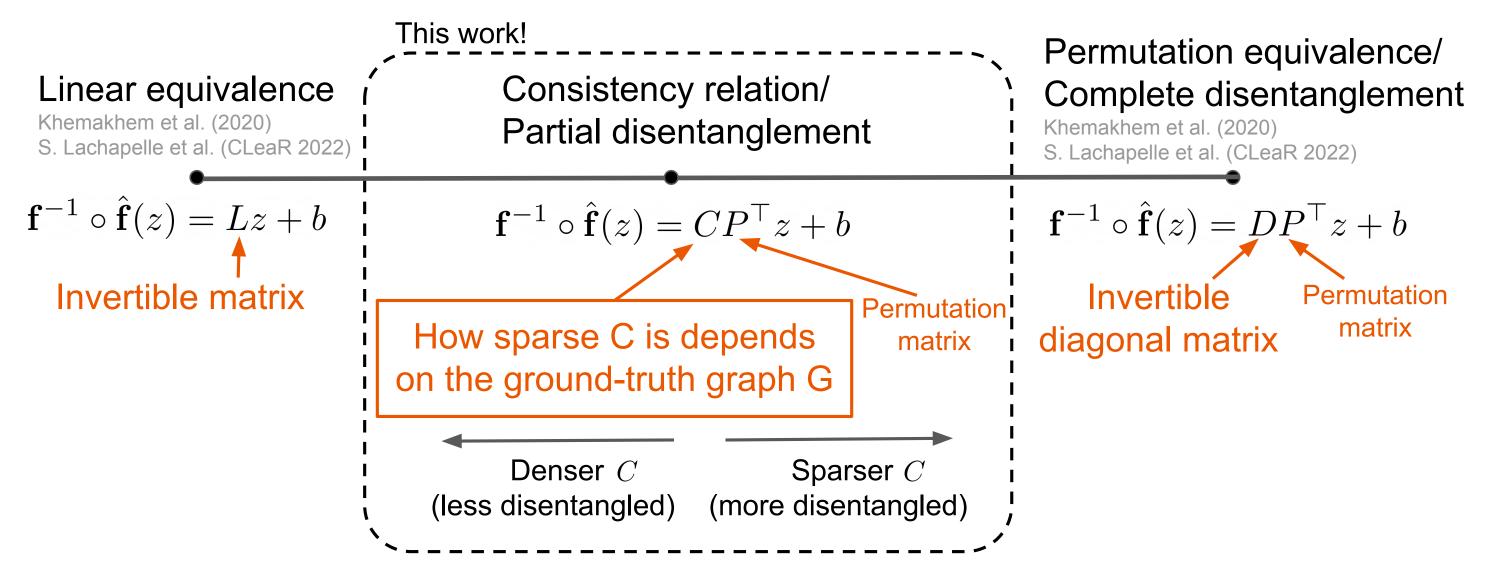
Table 1: Performance with and without the sparsity constraint on**synthetic dataset with temporal dependencies**.**Left:**Ground-truth graph and a learned graph of a typical run.



Sparsity	SHD	MCC	$R_{\sf con}$	R
	(# edge errors)	(permutation eq.)	(consistency)	(linear eq.)

- Make assumptions about the ground-truth model θ
- Prove guarantee of the form: $\mathbb{P}_{\theta} = \mathbb{P}_{\hat{\theta}} \implies \theta \sim \hat{\theta}$, where \sim is some equivalence relation that is more or less strong, depending on the assumptions.

1.2 Continuum of equivalence relations



- <mark>1.00</mark> 0.00 0.00 0.00 <mark>1.00</mark>	-0.04 0.20 0.00 0.00 0.00 0.00 0.00 0.00
1.00 0.00 0.00 0.00 1.00	0.11 0.14 0.01 0.00 0.00 0.01 0.00 0.01 0.71 0.59
Ground-truth $G^a_{\left(2 ight)}$	Sparsity pattern of C (Def. 7)
-1.00 0.00 0.00 0.00 0.00	- <mark>1.00 1.00</mark> 0.00 0.00 0.00 0.00 0.00 0.00
<mark>1.00</mark> 0.00 0.00 0.00 0.00	1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
-0.00 <mark>1.00</mark> 0.00 0.00 0.00	- 0.00 0.00 <mark>1.00 1.00</mark> 0.00 0.00 0.00 0.00 0.00
0.00 <mark>1.00</mark> 0.00 0.00 0.00	0.00 0.00 <mark>1.00 1.00</mark> 0.00 0.00 0.00 0.00 0.00 0.00
- 0.00 0.00 <mark>1.00</mark> 0.00 0.00	-0.00 0.00 0.00 0.00 <mark>1.00 1.00</mark> 0.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00	0.00 0.00 0.00 0.00 <mark>1.00 1.00</mark> 0.00 0.00 0.00 0.00
-0.00 0.00 0.00 1.00 0.00	-0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00
0.00 0.00 0.00 <mark>1.00</mark> 0.00 - 1.00 0.00 0.00 0.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 <mark>1.00 1.00</mark> 0.00 0.00
	- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
	0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00

No		$.69 {\pm} .05$.83±.02	$.95 {\pm} .00$
Yes	1.6 ±1.7	.81 ±.06	.98 ±.03	.99 ±.01

Table 2: Performance with and without the sparsity constraint on**synthetic dataset with actions**.**Left:** Ground-truth graph and alearned graph of a typical run.

References

- [1] Y. Bengio. "The Consciousness Prior". In: *arXiv preprint arXiv:1709.08568* (2019).
- [2] J. Gallego-Posada, J. Ramirez De Los Rios, and A. Erraqabi. "Flexible Learning of Sparse Neural Networks via Constrained L0 Regularization". In: *NeurIPS* 2021 Workshop LatinX in AI. 2021.
- [3] A. Goyal et al. "Recurrent Independent Mechanisms". In: ICLR. 2021.
- [4] E. Jang, S. Gu, and B. Poole. "Categorical Reparameterization with Gumbel-Softmax". In: *ICML* (2017).
- [5] I. Khemakhem et al. "Variational Autoencoders and Nonlinear ICA: A Unifying Framework". In: *AISTATS*. 2020.
- [6] D. P. Kingma and M. Welling. "Auto-Encoding Variational Bayes". In: *ICLR*. 2014.
- [7] S. Lachapelle et al. "Disentanglement via Mechanism Sparsity Regularization: A New Principle for Nonlinear ICA". In: *CLeaR*. 2022.
- C. J. Maddison, A. Mnih, and Y. W. Teh. "The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables". In: ICML (2017).