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Theorem (Partial disentanglement via mechanism sparsity) Suppose we have
two models with parameters 0 = (f, 4, G) and 8 = (f, i, G) representing the same
distribution, i.e. Px<r|,<7.y = Px<r <14 foralla~". Assume

[7] showed how mechanism sparsity regularization can identify causal latent factors
from high-dimensional observations based on the assumption that the ground-truth
causal graph connecting the latent factors is typically sparse [1, 3].

1. [Variability] The mechanisms \; are “sufficiently complex” (see paper)
2. [Sparsity] ||Gllo < ||G]lo
Then, 6 is consistent with 6, i.e. 6 ~con 6 (see next definition).

— Objects usually interact sparsely with each others.

— Actions typically affect only a few factors of variations.

 [7] introduced a graphical criterion guaranteeing complete disentanglement.

* This work generalizes [7] by dropping the graphical criterion and instead characterizes
qualitatively how disentangled the learned representation is expected to be given
the specific form of the ground-truth causal graph.

Definition (~con-equivalence) Two models 6 := (f,u,G) and 6 = (f, i, G) are
consistent, denoted 6 ~c¢on 6, If and only if there exists a permutation matrix P
such that

1. GF=P"'G*Pand G* = PTG* , and

2. f~1of(z) = CPT, where the matrix C is invertible, G*-consistent, (G*) -
consistent and G“-consistent (see next definition).

» To do so, we introduce a novel equivalence relation over models we call consistency.

* This equivalence relation captures which variables are expected to remain entangled and
which are not, hence the term partial disentanglement.

* The graphical criterion of [7] can be derived from our more general theory.

« We follow [7] by leveraging VAE and gumbel-sigmoid masks, but replace sparsity regular-

o ) . . Definition (S-consistency) Given a binary matrix S € {0,1}™*", a matrix C &
ization by a sparsity constraint, as argued for in [2]. ( ) y 10,1}

R™*™ js S-consistent when
* |llustrations of our theory with synthetic data.

Vi, [L-S(L—8)"];; =0 = Cij =0. (1)

where [-]7 := max{0, -} and 1 is a matrix filled with ones.

1- BACKGROUND

 We showed that, for any binary matrix S, the set of invertible S-consistent matrices
forms a group under matrix multiplication. This allowed us to show that the relation
~con IS INdeed an equivalence relation.

» Recall the graphical criterion of [7]:
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! ({1 0 C 0 where Pa; and Ch; are the sets of parents and children of node z; in G*, respectively,
RCI1T 1 C 1 while Ch¢ is the set of children of a, in G°.
Btl1 1 1 0 * We proved that if the ground-truth graph happens to satisty the criterion of [7] (above), the
: ~ 4 L - matrix C' must be diagonal i.e. we have complete disentanglement.
| S— NN
G* G

4- EXPERIMENTS

4.1 Learning with VAE + sparsity constraint

« We use the VAE framework [6] with a variational approximate posterior given by
q(z=1 | =1 a<T) = H;‘le q(z" | x*).

This yields the following evidence lower bound (ELBO):
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log p(x="|a<")

Figure 1: Model in the context of the motivating example of [7] -
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1.1 Model (following [7])

We model the mechanisms \; with MLPs

» We observe sequences {X*};_, and {A®};_, and have Instead of adding a sparsity penalty as in [7], we add sparsity constraint, following [2].

The binary masks G* and G* are treated as random to allow for optimization via SGD

t t . 7 . %z dy ' '
X" =1f(Z') +noise withf : R™* - & C R'™ (difteomorphism and d. < d.) using the Gumbel-Softmax trick [8, 4].

» We follow [5] and assume the Z; are independent given Z<" and A<’

4.2 Experiments on synthetic data (d, = 20, d, = 10)
t <t <ty _ TT1d=2 t <t <t o -
. Sparsity | SHD MCC Recon R
and, for SlmpIICI’[y, assume each factor is Gaussian with a fixed variance i.e. (# edge errors) (permutation eq.) (consistency) (linear eq.)
p(Zf ’ Z<t, a<t) _ N(Zf, ,Uz(Gf o Z<t, G? o a<t)’ 1) . No — .68+.03 /8+.02 .98+.00
(a) Yes 5.6+5.0 .86+.02 99+.01 1.0+.00
Paper is more general and applies to the exponential family with 1d sufficient statistics.
L the tion functions/ hani terized b NN Table 1: Performance with and without the sparsity constraint on
1; 'S are the transition functions/mechanisms (e.g. parameterized by a NN). synthetic dataset with temporal dependencies. Left:
. G = [G*G"] is the adjacency matrix of the causal graph. Ground-truth graph and a learned graph of a typical run.
» Learnable parameters are 0 := (f, u, G)
_ o Sparsit SHD MCC R R
1.2 Anatomy of identifiability results parstty | - |
(# edge errors) (permutation eq.) (consistency) (linear eq.)
« Postulate a family of distributions over observations Py parameterized by 6 No - 69 05 83402 95+ 00
- Make assumptions about the ground-truth model 6 (D) sroundruen G, spariy pastem e oet 7 Yes 1.6+£17  .81+.06 .98+.03 .99+.01

» Prove guarantee of the form: Py = P; —> 0 ~ 6, where ~ is some equivalence relation

that is more or less strong, depending on the assumptions. Table 2: Performance with and without the sparsity constraint on

synthetic dataset with actions. Left: Ground-truth graph and a
learned graph of a typical run.

1.2 Continuum of equivalence relations

This work!

Linear equivalence
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