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CONTRIBUTIONS

• [7] showed how mechanism sparsity regularization can identify causal latent factors
from high-dimensional observations based on the assumption that the ground-truth
causal graph connecting the latent factors is typically sparse [1, 3].

– Objects usually interact sparsely with each others.

– Actions typically affect only a few factors of variations.

• [7] introduced a graphical criterion guaranteeing complete disentanglement.

• This work generalizes [7] by dropping the graphical criterion and instead characterizes
qualitatively how disentangled the learned representation is expected to be given
the specific form of the ground-truth causal graph.

• To do so, we introduce a novel equivalence relation over models we call consistency.

• This equivalence relation captures which variables are expected to remain entangled and
which are not, hence the term partial disentanglement.

• The graphical criterion of [7] can be derived from our more general theory.

• We follow [7] by leveraging VAE and gumbel-sigmoid masks, but replace sparsity regular-
ization by a sparsity constraint, as argued for in [2].

• Illustrations of our theory with synthetic data.

1- BACKGROUND
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Figure 1: Model in the context of the motivating example of [7]

1.1 Model (following [7])

• We observe sequences {Xt}Tt=1 and {At}Tt=1 and have

Xt = f(Zt) + noiset with f : Rdz → X ⊂ Rdx (diffeomorphism and dz ≤ dx)

• We follow [5] and assume the Zt
i are independent given Z<t and A<t

p(zt | z<t, a<t) =
∏dz

i=1 p(z
t
i | z<t, a<t) ,

and, for simplicity, assume each factor is Gaussian with a fixed variance i.e.

p(zti | z<t, a<t) = N (zti ;µi(G
z
i ⊙ z<t, Ga

i ⊙ a<t), 1) .

Paper is more general and applies to the exponential family with 1d sufficient statistics.

• µi’s are the transition functions/mechanisms (e.g. parameterized by a NN).

• G = [GzGa] is the adjacency matrix of the causal graph.

• Learnable parameters are θ := (f , µ,G)

1.2 Anatomy of identifiability results
• Postulate a family of distributions over observations Pθ parameterized by θ

• Make assumptions about the ground-truth model θ

• Prove guarantee of the form: Pθ = Pθ̂ =⇒ θ ∼ θ̂, where ∼ is some equivalence relation
that is more or less strong, depending on the assumptions.

1.2 Continuum of equivalence relations
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2- IDENTIFIABILITY RESULT

Theorem (Partial disentanglement via mechanism sparsity) Suppose we have
two models with parameters θ = (f , µ,G) and θ̂ = (f̂ , µ̂, Ĝ) representing the same
distribution, i.e. PX≤T |a<T ;θ = PX≤T |a<T ;θ̂ for all a<T . Assume

1. [Variability] The mechanisms λi are “sufficiently complex” (see paper)

2. [Sparsity] ||Ĝ||0 ≤ ||G||0
Then, θ̂ is consistent with θ, i.e. θ ∼con θ̂ (see next definition).

Definition (∼con-equivalence) Two models θ := (f , µ,G) and θ̃ := (f̃ , µ̃, G̃) are
consistent, denoted θ ∼con θ̃, if and only if there exists a permutation matrix P
such that

1. Gz = P⊤G̃zP and Ga = P⊤G̃a , and

2. f−1 ◦ f̂(z) = CP⊤, where the matrix C is invertible, Gz-consistent, (Gz)⊤-
consistent and Ga-consistent (see next definition).

Definition (S-consistency) Given a binary matrix S ∈ {0, 1}m×n, a matrix C ∈
Rm×m is S-consistent when

∀i, j, [1− S(1− S)⊤]+i,j = 0 =⇒ Ci,j = 0 , (1)

where [·]+ := max{0, ·} and 1 is a matrix filled with ones.

• We showed that, for any binary matrix S, the set of invertible S-consistent matrices
forms a group under matrix multiplication. This allowed us to show that the relation
∼con is indeed an equivalence relation.

• Recall the graphical criterion of [7]:
∀1 ≤ i ≤ dz,
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where Paz
i and Chz

i are the sets of parents and children of node zi in Gz, respectively,
while Cha

ℓ is the set of children of aℓ in Ga.

• We proved that if the ground-truth graph happens to satisfy the criterion of [7] (above), the
matrix C must be diagonal i.e. we have complete disentanglement.

4- EXPERIMENTS

4.1 Learning with VAE + sparsity constraint
• We use the VAE framework [6] with a variational approximate posterior given by
q(z≤T | x≤T , a<T ) :=

∏T
t=1 q(z

t | xt).

• This yields the following evidence lower bound (ELBO): log p(x≤T |a<T ) ≥

∑T
t=1 E

Zt∼q(·|xt)
[log p(xt | Zt)] + E

Zt−1∼q(·|xt−1)
KL(q(Zt | xt)||p(Zt | Zt−1, at−1)) .

• We model the mechanisms λi with MLPs

• Instead of adding a sparsity penalty as in [7], we add sparsity constraint, following [2].

• The binary masks Gz and Ga are treated as random to allow for optimization via SGD
using the Gumbel-Softmax trick [8, 4].

4.2 Experiments on synthetic data (dx = 20, dz = 10)

Sparsity SHD MCC Rcon R
(# edge errors) (permutation eq.) (consistency) (linear eq.)

No — .68±.03 .78±.02 .98±.00

Yes 5.6±5.0 .86±.02 .99±.01 1.0±.00

Table 1: Performance with and without the sparsity constraint on
synthetic dataset with temporal dependencies. Left:
Ground-truth graph and a learned graph of a typical run.

Sparsity SHD MCC Rcon R
(# edge errors) (permutation eq.) (consistency) (linear eq.)

No — .69±.05 .83±.02 .95±.00

Yes 1.6±1.7 .81±.06 .98±.03 .99±.01

Table 2: Performance with and without the sparsity constraint on
synthetic dataset with actions. Left: Ground-truth graph and a
learned graph of a typical run.
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