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CONTRIBUTIONS 2- DISENTANGLEMENT VIA MECHANISM SPARSITY

* A new approach to achieve nonlinear ICA/disentanglement.

* Novel identifiability result based on the assumption that the
causal graph connecting the latent factors is typically sparse [1, 2].

— Objects usually interact sparsely with each others.
— Actions typically affect only a few factors of variations.

« An estimation procedure which relies on the variational autoencoder (VAE) and a
masking mechanism allowing to regularize for sparsity.

* As a special case of our framework, showing how unknown-target interventions
on the latent factors can be leveraged to disentangle them, which is closely related
to the sparse mechanism shift hypothesis introduced in [10].

lllustrations of our theory with synthetic data.

1- BACKGROUND

1.1 Motivating example

« X cR%
« 7 € R% : Low-dim. latent representation
+ f:R% — X C R%
* d. <dg

. High-dim. observation

: Invertible decoder

1.2 Disentanglement

Definition (Disentanglement) Given a ground-truth model f, a learned represen-
tation f is disentangled it both are permutation-equivalent.

Definition (Permutation-equivalence)” [7]
Two models f and f (representing the same data manifold X') are permutation-
equivalent, denoted by f ~,, f, when

f~'(z) =PDf "(z)+b Ve e X

where P is a permutation matrix and D an invertible diagonal matrix.

aSimplified definition, see paper for details.

1.3 Identifiability
« Unsupervised disentanglement is possible when f is identifiable up to ~,,

—p(z) Vo = f~pf |

~p-identifiability: p(z)

where p(z) and p(z) are the densities of X when the decoder is f and f, respectively.

* Problem: With the standard assumption of factor independence, the mixing function
f is not identifiable from the distribution of X (without further assumptions) [3].

 Recent development: Identifiability of the latent factors is possible even with non-
linear mixing, as long as the latent variables are conditionally independent given
an observed auxiliary variable [4, 7, 6].

« A € R% : Observed auxiliary variable, e.g. an environment index or an action.

Disentanglement via Mechanism Sparsity Regularization: A New Principle for Nonlinear ICA

Sébastien Lachapelle!, Pau Rodriguez Lépez?, Yash Sharma?, Katie Everett*, Rémi Le Priol!, Alexandre Lacoste?, Simon Lacoste-Julien'»’

IMila, Université de Montréal “ServiceNow Research *Tibingen Al Center, University of Tlibingen *Google Reasearch >Canada CIFAR Al Chair

Figure 1: Model in the context of our motivating example

 We observe sequences {X*}/_; and {A*}/_; and have

X' =£(Z") +noise’.

« We follow [7] and assume the Z} are independent given Z<" and A<’

p(z' |2~ a™") =TTz, p(et | 25%,a7),

and assume each factor above lives in an exponential family, i.e.

p(z | 25°,a~") = hi(z;) exp{Ti(27) A (G 02", Gi@a™") =95 (2=, a™)} -

which, for example, includes Gaussian with fixed variance.

- T, : R — Ris the sufficient statistic of Z; * \; outputs the natural parameter

« Learnable parameters are 6 := (f, A\, G)  1); IS the normalizing constant

Theorem (Disentanglement via Mechanism Sparsity) Suppose we have
two models with parameters 6 = (f, A\, G) and 6 = (f, A\, G) representing the
same distribution, i.e. Px<r <7,y = Px<r <74 forall a~". Assume

1. The sufficient statistics T'; are strictly monotonic
2. [Variability] The mechanisms \; are “sufficiently complex” (see paper)
3. [Sparsity] ||G]|lo < ||G]o

4. [Graphical criterion] For all p € {1,....d.}, there exist sets
Z,J CcAl,..,d;}and £ C {1,...,d,} such that

(ﬂ Pa§> N (ﬂ Ch§> N (ﬂ Ch?) = 1PJ
i€l jed tel

where Pa; and Ch; are the sets of parents and children of node z; In
G*, respectively, while Chy is the set of children of a, In G“.

Then, f and f are permutation-equivalent, i.e. the model f is disentangled.
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4- EXPERIMENTS
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Figure 2: Two graphs that satisfies the graphical criterion.

Chi N Chj = {29}

4.1 Learning with regularized VAE
 We use the VAE framework [8] with a variational approximate posterior given by:

<T <T) .

— H;,rzl Q(Zt ’ xt) :

This yields the following evidence lower bound (ELBO): logp(z="]a<") >

q(z=" | 2=

Sior  E  [logp(z’ | 2]+ E KL(q(Z" | 2)||p(Z" | 271, a"7Y)).

Ztroq(-|x?) Zt—=lrq( ot 1)

We model the mechanisms \; with MLPs

We add —a..||G7||o and —a,||G?||o to the objective to regularize for sparsity.

The binary masks G* and G“ are treated as random to allow for optimization via
SGD using the Gumbel-Softmax trick [9, 5].

4.2 Experiments on synthetic data (d, = 20, d, = 10)
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Figure 3: Positive effect of sparsity regularization on two datasets. Left. Data gener-
ated from a graph like the left one of Fig 2. Right. Data generated from a graph like
the right one Fig 2.

« MCC = measure of disentanglement [4] (higher is better)

« SHD = distance to ground-truth graph (lower is better)

3- ACTIONS AS UNKNOWN-TARGET INTERVENTIONS

» Suppose A = 0 corresponds to the observational distribution
« and A = €, corresponds to the /th intervention (one-hot vector)
* Then, G, =1 <= z; is targeted by the /th intervention. (G“ must be learned!)
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