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CONTRIBUTIONS

• A new approach to achieve nonlinear ICA/disentanglement.

• Novel identifiability result based on the assumption that the
causal graph connecting the latent factors is typically sparse [1, 2].

– Objects usually interact sparsely with each others.

– Actions typically affect only a few factors of variations.

• An estimation procedure which relies on the variational autoencoder (VAE) and a
masking mechanism allowing to regularize for sparsity.

• As a special case of our framework, showing how unknown-target interventions
on the latent factors can be leveraged to disentangle them, which is closely related
to the sparse mechanism shift hypothesis introduced in [10].

• Illustrations of our theory with synthetic data.

1- BACKGROUND

1.1 Motivating example
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• X ∈ Rdx : High-dim. observation

• Z ∈ Rdz : Low-dim. latent representation

• f : Rdz → X ⊂ Rdx : Invertible decoder

• dz ≤ dx

1.2 Disentanglement

Definition (Disentanglement) Given a ground-truth model f , a learned represen-
tation f̂ is disentangled if both are permutation-equivalent.

Definition (Permutation-equivalence)a [7]
Two models f and f̂ (representing the same data manifold X ) are permutation-
equivalent, denoted by f ∼p f̂ , when

f−1(x) = PDf̃−1(x) + b ∀x ∈ X

where P is a permutation matrix and D an invertible diagonal matrix.
aSimplified definition, see paper for details.

1.3 Identifiability
• Unsupervised disentanglement is possible when f is identifiable up to ∼p

∼p-identifiability: p(x) = p̂(x) ∀x =⇒ f ∼p f̂ ,

where p(x) and p̂(x) are the densities ofX when the decoder is f and f̂ , respectively.

• Problem: With the standard assumption of factor independence, the mixing function
f is not identifiable from the distribution of X (without further assumptions) [3].

• Recent development: Identifiability of the latent factors is possible even with non-
linear mixing, as long as the latent variables are conditionally independent given
an observed auxiliary variable [4, 7, 6].

• A ∈ Rda : Observed auxiliary variable, e.g. an environment index or an action.

2- DISENTANGLEMENT VIA MECHANISM SPARSITY
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Figure 1: Model in the context of our motivating example

• We observe sequences {Xt}Tt=1 and {At}Tt=1 and have

Xt = f(Zt) + noiset .

• We follow [7] and assume the Zti are independent given Z<t and A<t

p(zt | z<t, a<t) =
∏dz
i=1 p(z

t
i | z<t, a<t) ,

and assume each factor above lives in an exponential family, i.e.

p(zti | z<t, a<t) = hi(z
t
i) exp{Ti(z

t
i)λi(G

z
i�z<t, Gai�a<t)−ψi(z<t, a<t)} .

which, for example, includes Gaussian with fixed variance.

• Ti : R→ R is the sufficient statistic of Zti
• Learnable parameters are θ := (f ,λ, G)

• λi outputs the natural parameter

• ψi is the normalizing constant

Theorem (Disentanglement via Mechanism Sparsity) Suppose we have
two models with parameters θ = (f ,λ, G) and θ̂ = (f̂ , λ̂, Ĝ) representing the
same distribution, i.e. PX≤T |a<T ;θ = PX≤T |a<T ;θ̂ for all a<T . Assume

1. The sufficient statistics Ti are strictly monotonic

2. [Variability] The mechanisms λi are “sufficiently complex” (see paper)

3. [Sparsity] ||Ĝ||0 ≤ ||G||0
4. [Graphical criterion] For all p ∈ {1, ..., dz}, there exist sets
I,J ⊂ {1, ..., dz} and L ⊂ {1, ..., da} such that(⋂

i∈I

Pazi

)
∩

(⋂
j∈J

Chzj

)
∩

(⋂
`∈L

Cha`

)
= {p} ,

where Pazi and Chzi are the sets of parents and children of node zi in
Gz, respectively, while Cha` is the set of children of a` in Ga.

Then, f and f̂ are permutation-equivalent, i.e. the model f̂ is disentangled.

3- ACTIONS AS UNKNOWN-TARGET INTERVENTIONS
• Suppose A = ~0 corresponds to the observational distribution
• and A = ~e` corresponds to the `th intervention (one-hot vector)
• Then, Gai,` = 1 ⇐⇒ zi is targeted by the `th intervention. (Ga must be learned!)

4- EXPERIMENTS

Figure 2: Two graphs that satisfies the graphical criterion.

4.1 Learning with regularized VAE
• We use the VAE framework [8] with a variational approximate posterior given by:

q(z≤T | x≤T , a<T ) :=
∏T
t=1 q(z

t | xt) .

• This yields the following evidence lower bound (ELBO): log p(x≤T |a<T ) ≥

∑T
t=1 E

Zt∼q(·|xt)
[log p(xt | Zt)]+ E

Zt−1∼q(·|xt−1)
KL(q(Zt | xt)||p(Zt | Zt−1, at−1)) .

• We model the mechanisms λi with MLPs

• We add −αz||Gz||0 and −αa||Ga||0 to the objective to regularize for sparsity.

• The binary masks Gz and Ga are treated as random to allow for optimization via
SGD using the Gumbel-Softmax trick [9, 5].

4.2 Experiments on synthetic data (dx = 20, dz = 10)

Figure 3: Positive effect of sparsity regularization on two datasets. Left. Data gener-
ated from a graph like the left one of Fig 2. Right. Data generated from a graph like
the right one Fig 2.

• MCC = measure of disentanglement [4] (higher is better)

• SHD = distance to ground-truth graph (lower is better)
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