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Summary
•Goal:

– Estimating a (causal) graph from observational data
– Allowing for nonlinear relationships between variables
– Leveraging a continuous constrained optimization formulation [7]

•Method:
We propose GraN-DAG, a score-based approach using neural networks (NN) and an
acyclicity constraint extended from [7] allowing gradient-based optimization

•Motivation:
– Avoid combinatorial optimization usually required to learn a DAG
– Instead, use well-known continuous constrained optimization technique such as an

augmented Lagrangian method
•Application: E.g.: protein expression levels in human cells [5]

Related Work
•Continuous constrained formulation: NOTEARS [7], DAG-GNN [6]
•Discrete formulation solved greedily: CAM [1], GSF [3], GES [2]

Contributions
•GraN-DAG: Extends NOTEARS [7] (linear) to support NN (nonlinear)
•Empirical comparison to both continuous and discrete approaches
• Show GraN-DAG is competitive on both synthetic and real-world tasks

Overview

Causal graphical models (CGM)
•PX is a distribution over variable X ∈ Rd and G = (V,E) is a DAG

• p(x) =
∏d

j=1p(xj|xπGj ) (πGj = parents of j in G)
•CGM is like a bayesian network, but arrows are given causal meaning
•CGMs allow to ask: ”What will happen if I intervene on Xj?”

Structure/causal learning & Identifiability
•Given n i.i.d. samples from PX, estimate G
• In general, it is impossible i.e. G is not identifiable from PX

•Given a set of assumptions A on a CGM (PX,G), we say that G is identifiable from
PX if there exists no other CGM (P̃X, G̃) satisfying A such that PX = P̃X and G 6= G̃

•Need assumptions: faithfulness or restrictions on p(xj|xπGj ) ∀j

•E.g. Xj|XπGj
∼ N (fj(XπGj

), σ2
j) ∀j =⇒ G is identifiable from PX [1]

• Score-based formulation: Ĝ = arg maxG∈DAG S(G)
•Popular approaches greedily maximize a regularized likelihood [1, 3, 2]

Continuous optimization for DAG learning
•DAGs with NOTEARS [7] assumes a linear model: Xj := u>j X + εj

•U = [u1|...|ud] ∈ Rd×d is interpreted as a weighted adjacency matrix and
Uij = 0 =⇒ Xi is not a parent of Xj

•Enforce acyclicity by Tr eU�U = d and solve w/ augmented Lagrangian
•Constraint intuition: Let B be a binary adjacency matrix

(Bk)ij = number of paths of length k from i to j

Tr eB − d =
∑∞

k=1
TrBk

k!
≈ number of cycles of every lengths

Performance metrics for graph estimation
SHD: Counts the number of missing, falsely detected or reversed edges
SID: Counts the number of couples (i, j) such that the interventional distribution
p(xj|do(Xi = x̄)) would be miscalculated if we were to use the estimated graph to
form the parent adjustment set
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The method
• Learns d MLPs of L hidden layers, each denoted by NNφ(j)

φ(j) , {W
(`)
(j)}L+1

`=1 and W
(`)
(j) , weight matrix of layer ` in NN j

•MLP j outputs a parameter θ(j) ∈ Rm used to compute p(xj|x−j;φ(j))

•
∏d

j=1p(xj|x−j;φ(j)) is not a valid pdf (does not decompose wrt a DAG!)
•We propose a weighted adjacency matrix Aφ ∈ Rd×d

≥0 which can be used in the
NOTEARS constraint [7] to enforce acyclicity

Computation graph

Neural network connectivity

•Path product: |W (1)
h1i||W

(2)
h2h1| . . . |W

(L+1)
khL
| ≥ 0 (= 0 path inactive)

i.e. strength of the NN path (i, h1, h2, ..., hL, k)
• For each NN j, consider the matrix product of the weights in abs. value:

C(j) , |W
(L+1)
(j) | . . . |W (2)

(j) ||W
(1)
(j) | ∈ Rm×d

≥0

•
∑m

k=1(C(j))ki = sum of all the path products from Xi to parameter θ(j)

Constraint & Optimization

Define (Aφ)ij ,


∑m

k=1

C(j)

ki
, if j 6= i

0, otherwise
•By construction, (Aφ)ij = 0 =⇒ θ(j) does not depend on variable Xi

•Hence, we can use Aφ in the acyclicity constraint of [7], yielding

max
φ

EX∼PX
∑d

j=1 log p(Xj|Xπ
φ
j
;φ(j)) s.t. Tr eAφ − d = 0

• Solve approximately using an augmented Lagrangian method
•Aφ is thresholded using a binary mask M (see figure and our paper [4])

Avoiding overfitting
•Note that adding more edges never reduces the maximum likelihood score
•To avoid spurious edges, we perform a final DAG pruning step identical to CAM [1]

by fitting a generalized additive model and performing a significance test of covariates
•When d ≥ 50, a preliminary neighbors selection step is applied to restrict the number

of potential parents, similar to CAM [1]
•Moreover, we use early stopping on each subproblem of the augmented Lagrangian

GraN-DAG

• Synthetic data: performance averaged over 10 graphs
•ER and SF are two graph sampling schemes
• d = number of nodes, e = average number of edge per graph

ER d = 50 e = 50 SF d = 50 e = 200 Protein data set [5]
SHD SID SHD SID SHD SID

GraN-DAG 5.1±3 22.4±18 111.3±12 271.2±65 13 47
DAG-GNN 49.2±8 304.4±105 144.9±13 540.8±151 16 44
NOTEARS 62.8±9 327.3±120 153.7±12 558.4±154 21 44
CAM 4.3±2 22.0±18 111.2±13 320.7±153 12 55
GSF 25.6±5 [21.1±23 120.2±11 [284.7±80 18 [44, 61]

79.2±34] 379.9±98]
RANDOM 535.7±401 272.3±126 660.6±195 1198.9±305 21 60

•On synthetic tasks, GraN-DAG outperforms other continuous approaches and is com-
petitive with best performing greedy approach (CAM)

•GraN-DAG is also competitive on the real-world protein data set
• See our paper [4] for more experiments (graphs of up to 100 nodes)
•Our code: https://github.com/kurowasan/GraN-DAG

Experiments and conclusion

https://github.com/kurowasan/GraN-DAG

