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Overview

Summary

-
e Goal:

— Estimating a (causal) graph from observational data
— Allowing for nonlinear relationships between variables
— Leveraging a continuous constrained optimization formulation [7]

e Method:

We propose GraN-DAG, a score-based approach using neural networks (NN) and an
acyclicity constraint extended from [7] allowing gradient-based optimization

e Motivation:

— Avoid combinatorial optimization usually required to learn a DAG

— |Instead, use well-known continuous constrained optimization technique such as an
augmented Lagrangian method

\oAppIication: E.g.: protein expression levels in human cells [5]

p Related Work N

e Continuous constrained formulation: NOTEARS [7], DAG-GNN |[6]

_ @ Discrete formulation solved greedily: CAM [1], GSF [3], GES [2]

. Contributions §

e GraN-DAG: Extends NOTEARS [7] (linear) to support NN (nonlinear)

e Empirical comparison to both continuous and discrete approaches

GraN-DAG
. The method N

e Learns d MLPs of L hidden layers, each denoted by NN%)
D) = {W(g)) I+l and Wg; 2 weight matrix of layer £ in NN j
o MLP j outputs a parameter ¢;) € R™ used to compute p(x;|z_;; @)

[T b)) | id pdf (d d DAG!
o 11 p(x;lz_j; ¢(;) is not a valid pdf (does not decompose wrt a )

e We propose a weighted adjacency matrix Ay & R%d which can be used in the

NOTEARS constraint [7] to enforce acyclicity
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& Show GraN-DAG is competitive on both synthetic and real-world tasks

Background

e Py is a distribution over variable X € R? and G = (V, E) is a DAG
d
op(x) = szlp(a:j\xﬂg) (7 = parents of j in G)

e CGM is like a bayesian network, but arrows are given causal meaning

e CGMs allow to ask: "What will happen if | intervene on X ;7"

e Given n i.i.d. samples from Py, estimate §
e In general, it is impossible i.e. G is not identifiable from Px

e Given a set of assumptions A on a CGM (Px, G), we say that G is identifiable from
Py if there exists no other CGM ( Py, G) satisfying A such that Py = Py and G # G

e Need assumptions: faithfulness or restrictions on p(z;|z_g) Vj
J
oEg Xj|X ¢ ~N(fj(X g),07) Vj = G is identifiable from Px [I]
J J

e Score-based formulation: Q = arg MaXgepaG S(G)

e Popular approaches greedily maximize a regularized likelihood [1, 3, 2]

o DAGs with NOTEARS [7] assumes a linear model: X; == uj X +¢;

o U = [u]...Jug) € R*? is interpreted as a weighted adjacency matrix and
Ui =0 = X, is not a parent of X

e Enforce acyclicity by TreV®Y = d and solve w/ augmented Lagrangian

e Constraint intuition: Let B be a binary adjacency matrix
(B¥);; = number of paths of length k from i to j

s Tr BY
TreB—d:Zkzl rk!

~ number of cycles of every lengths

SHD: Counts the number of missing, falsely detected or reversed edges

SID: Counts the number of couples (7, 7) such that the interventional distribution
p(x;|do(X; = x)) would be miscalculated if we were to use the estimated graph to
form the parent adjustment set
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- — => acyclicity constraint computation path

Neural network connectivity

-

e Path product: |W;§2HW;§§%1| . yWéﬁj”\ >0 (=0 path inactive)
i.e. strength of the NN path (¢, hy, ho, ..., hy, k)

e For each NN 7, consider the matrix product of the weights in abs. value:

L+1 2 1 i
Cy) = \W<<:/>+ ... \WéQHWéf\ e Rz

- ZZ:1(0<j))ki = sum of all the path products from X; to parameter 6,

Constraint & Optimization

Define (A¢)ij L Zkzl (C(j))k@' , if g #i

0, otherwise

e By construction, (4y);; =0 == 0;) does not depend on variable X;

e Hence, we can use A in the acyclicity constraint of [7], yielding
d
§ : A _
qujlx EXNPX i 10gp(Xj|Xﬂj¢, ¢(]>) S.t. Tre™ —d=0

e Solve approximately using an augmented Lagrangian method

K'Agb is thresholded using a binary mask M (see figure and our paper [4])

Avoiding overfitting

-
e Note that adding more edges never reduces the maximum likelihood score

e To avoid spurious edges, we perform a final DAG pruning step identical to CAM [1]
by fitting a generalized additive model and performing a significance test of covariates

e When d > 50, a preliminary neighbors selection step is applied to restrict the number
of potential parents, similar to CAM [1]

® Moreover, we use early stopping on each subproblem of the augmented Lagrangian )

Experiments and conclusion

e Synthetic data: performance averaged over 10 graphs
e ER and SF are two graph sampling schemes

e d = number of nodes, e = average number of edge per graph

ER d =50 e =50 SEF' d =50 e = 200 Protein data set |5
SHD SID SHD SID SHD SID

GraN-DAG 5.1+3 22.44+18 111.34+12 271.24+65 13 47
DAG-GNN 49.248 304.4=105 144913 540.8=151 16 44
NOTEARS 62.849 327.34+120 153.7£12 558.4%x154 21 44

CAM 4.3+2 22.0+18 111.24+13 320.7=153 12 55
GSF 25.6E£5 21.14£23  120.24+11 [284.7480 18 |44, 61]
79.2+34] 379.9+98]

RANDOM 535.7£401 272.3£126 660.64+195 1198.94305 21 60

e On synthetic tasks, GraN-DAG outperforms other continuous approaches and is com-
petitive with best performing greedy approach (CAM)

e GraN-DAG is also competitive on the real-world protein data set
e See our paper [4] for more experiments (graphs of up to 100 nodes)

e Our code: https://github.com/kurowasan/GraN-DAG


https://github.com/kurowasan/GraN-DAG

