

Gradient-Based Neural DAG Learning

Sébastien Lachapelle¹ Philippe Brouillard¹ Tristan Deleu¹ Simon Lacoste-Julien^{1,2} 1 Mila, Université de Montréal 2 Canada CIFAR AI Chair

- Show GraN-DAG is competitive on both synthetic and real-world tasks

Background

Causal graphical models (CGM)

- P_X is a distribution over variable $X \in \mathbb{R}^d$ and $\mathcal{G} = (V, E)$ is a DAG
- $p(x) = \prod_{j=1}^{d} p(x_j | x_{\pi_j^{\mathcal{G}}}) \ (\pi_j^{\mathcal{G}} = \text{parents of } j \text{ in } \mathcal{G})$
- CGM is like a *bayesian network*, but arrows are given *causal* meaning
- CGMs allow to ask: "What will happen if I intervene on X_i ?"

Structure/causal learning & Identifiability

Neural network connectivity

• Path product: $|W_{h_1i}^{(1)}||W_{h_2h_1}^{(2)}|\dots|W_{kh_L}^{(L+1)}| \ge 0$ (= 0 path inactive) i.e. strength of the NN path $(i, h_1, h_2, ..., h_L, k)$

• For each NN j, consider the matrix product of the weights in abs. value:

 $C_{(j)} \triangleq |W_{(j)}^{(L+1)}| \dots |W_{(j)}^{(2)}| |W_{(j)}^{(1)}| \in \mathbb{R}_{>0}^{m \times d}$

• $\sum_{k=1}^{m} (C_{(j)})_{ki}$ = sum of all the *path products* from X_i to parameter $\theta_{(j)}$

Constraint & Optimization

- Given n i.i.d. samples from P_X , estimate \mathcal{G}
- In general, it is impossible i.e. \mathcal{G} is not *identifiable* from P_X
- Given a set of assumptions A on a CGM (P_X, \mathcal{G}) , we say that \mathcal{G} is identifiable from P_X if there exists no other CGM (P_X, \mathcal{G}) satisfying A such that $P_X = P_X$ and $\mathcal{G} \neq \mathcal{G}$
- Need assumptions: *faithfulness* or restrictions on $p(x_j | x_{\pi_i^{\mathcal{G}}}) \quad \forall j$

• E.g.
$$X_j | X_{\pi_j^{\mathcal{G}}} \sim \mathcal{N}(f_j(X_{\pi_j^{\mathcal{G}}}), \sigma_j^2) \quad \forall j \implies \mathcal{G} \text{ is identifiable from } P_X [1]$$

- Score-based formulation: $\hat{\mathcal{G}} = \arg \max_{\mathcal{G} \in \mathsf{DAG}} \mathcal{S}(\mathcal{G})$
- Popular approaches greedily maximize a regularized likelihood [1, 3, 2]

Continuous optimization for DAG learning

• DAGs with NOTEARS [7] assumes a linear model: $X_j := u_j^\top X + \epsilon_j$

• $U = [u_1|...|u_d] \in \mathbb{R}^{d \times d}$ is interpreted as a weighted adjacency matrix and $U_{ij} = 0 \implies X_i$ is not a parent of X_j

• Enforce acyclicity by $\operatorname{Tr} e^{U \odot U} = d$ and solve w/ augmented Lagrangian

• **Constraint intuition:** Let *B* be a binary adjacency matrix $(B^k)_{ij} =$ number of paths of length k from i to j $\operatorname{Tr} e^B - d = \sum_{k=1}^{\infty} \frac{\operatorname{Tr} B^k}{k!} \approx \text{number of cycles of every lengths}$

Performance metrics for graph estimation

SHD: Counts the number of missing, falsely detected or reversed edges **SID:** Counts the number of couples (i, j) such that the interventional distribution $\begin{array}{ll} \text{Define} & \left(A_{\phi}\right)_{ij} \triangleq \begin{cases} \sum_{k=1}^{m} \left(C_{(j)}\right)_{ki}, & \text{if } j \neq i \\ 0, & \text{otherwise} \end{cases} \end{array}$

• By construction, $(A_{\phi})_{ij} = 0 \implies \theta_{(j)}$ does not depend on variable X_i • Hence, we can use A_{ϕ} in the acyclicity constraint of [7], yielding

 $\max_{\phi} \mathbb{E}_{X \sim P_X} \sum_{j=1}^d \log p(X_j | X_{\pi_i^{\phi}}; \phi_{(j)}) \quad \text{s.t.} \quad \text{Tr} \, e^{A_{\phi}} - d = 0$

• Solve approximately using an *augmented Lagrangian method*

• A_{ϕ} is thresholded using a binary mask M (see figure and our paper [4])

Avoiding overfitting

• Note that adding more edges never reduces the maximum likelihood score

- To avoid spurious edges, we perform a final DAG pruning step identical to CAM [1] by fitting a generalized additive model and performing a significance test of covariates
- When $d \ge 50$, a preliminary neighbors selection step is applied to restrict the number of potential parents, similar to CAM [1]

• Moreover, we use *early stopping* on each subproblem of the augmented Lagrangian

Experiments and conclusion

- Synthetic data: performance averaged over 10 graphs
- ER and SF are two graph sampling schemes
- d = number of nodes, e = average number of edge per graph

 $p(x_i|do(X_i = \bar{x}))$ would be miscalculated if we were to use the estimated graph to form the parent adjustment set

References

[1] Bühlmann, P., Peters, J., & Ernest, J. (2014). CAM: Causal additive models, high-dimensional order search and penalized regression. Annals of Statistics.

[2] Chickering, D. (2003). Optimal structure identification with greedy search. Journal of Machine Learning Research.

[3] Huang, B., Zhang, K., Lin, Y., Schölkopf, B., & Glymour, C. (2018). Generalized score functions for causal discovery. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.

[4] Lachapelle, S., Brouillard, P., Deleu, T., & Lacoste-Julien, S. (2019). Gradient-based neural DAG learning. *CoRR*, abs/1906.02226.

[5] Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D., & Nolan, G. (2005). Causal protein-signaling networks derived from multiparameter single-cell data. Science.

[6] Yu, Y., Chen, J., Gao, T., & Yu, M. (2019). DAG-GNN: DAG structure learning with graph neural networks. In *Proceedings* of the 36th International Conference on Machine Learning.

[7] Zheng, X., Aragam, B., Ravikumar, P., & Xing, E. (2018). Dags with no tears: Continuous optimization for structure learning. In Advances in Neural Information Processing Systems 31.

	ER $d = 50 \ e = 50$		SF $d = 50 \ e = 200$		Protein data set $[5]$	
	SHD	SID	SHD	SID	SHD	SID
GraN-DAG	$5.1{\pm}3$	$22.4{\pm}18$	$111.3{\pm}12$	$271.2{\pm}65$	13	47
DAG-GNN	49.2 ± 8	304.4 ± 105	144.9 ± 13	540.8 ± 151	16	44
NOTEARS	62.8 ± 9	327.3±120	153.7 ± 12	558.4 ± 154	21	44
CAM	$4.3{\pm}2$	$22.0{\pm}18$	$111.2{\pm}13$	$320.7{\pm}153$	12	55
GSF	25.6 ± 5	$[21.1\pm23]$	$120.2{\pm}11$	$[284.7\pm80]$	18	[44, 61]
		79.2 ± 34]		379.9 ± 98]		
RANDOM	535.7 ± 401	272.3 ± 126	660.6 ± 195	1198.9 ± 305	21	60

• On synthetic tasks, GraN-DAG outperforms other continuous approaches and is competitive with best performing greedy approach (CAM)

• GraN-DAG is also competitive on the real-world protein data set

• See our paper [4] for more experiments (graphs of up to 100 nodes)

• Our code: https://github.com/kurowasan/GraN-DAG