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Résumé

Le triomphe de l’apprentissage profond dans divers domaines tels que la classification d’images,
la reconnaissance vocale, la génération de langage naturel et la génération d’images a été rendu
possible par l’augmentation de la taille des ensembles de données, l’augmentation de la capacité
de calcul, une communauté open source dynamique et des innovations architecturales qui, en-
semble, ont permis d’entrainer des réseaux neuronaux de plus en plus expressifs. Bien que cette
nouvelle approche ait abouti à des percées impressionnantes, elle a été accompagnée d’un manque
d’interprétabilité des modèles et de garanties théoriques. Cette thèse tente de construire des modèles
suffisamment restreints pour être interprétables et/ou analysables théoriquement tout en restant
suffisamment expressifs pour être utiles dans des modalités difficiles telles que les images. La
plupart des contributions se concentrent sur l’identifiabilité, la propriété qu’un modèle statistique
possède lorsque ses paramètres sont déterminés par la distribution qu’ils représentent, à une classe
d’équivalence près. Bien que l’identifiabilité soit centrale en inférence causale, en apprentissage de
graphe causal et en analyse de composantes indépendante, cette propriété n’est pas aussi bien com-
prise dans le contexte de l’apprentissage profond. Cette thèse soutient que l’étude de l’identifiabilité
en apprentissage automatique est utile pour mieux comprendre les modèles existants ainsi que
pour en construire de nouveaux qui soient interprétables et pourvus de garanties de généralisation.
Ce qui en découle sont de nouvelles garanties d’identifiabilité pour des modèles expressifs, pour
l’apprentissage de graphe causal et de représentations.

Les première et deuxième contributions (Chapitres 3 et 4) proposent de nouveaux algorithmes
basés sur les gradients pour apprendre un graphe causal à partir de données observationnelles et
interventionnelles, respectivement. Ces contributions ont étendu des approches contraintes continues
des relations linéaires aux relations non linéaires et ont souligné l’avantage computationnel de ces
approches lorsque l’ensemble de données est très grand.

Les troisième, quatrième et cinquième contributions (Chapitres 5, 6 et 7) fournissent de nouvelles
garanties d’identifiabilité pour le désentrelacement (disentanglement) dans l’apprentissage de
représentations. Le Chapitre 5 montre que, dans un modèle spécifique à variables latentes, les
facteurs latents réels peuvent être identifiés à une permutation et une bijection par élément près
lorsque des variables auxiliaires observées et/ou des facteurs latents passés les affectent de manière
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parcimonieuse (sparse). Ces résultats ne font pas d’hypothèses paramétriques et caractérisent
la structure du désentrelacement en fonction du graphe causal latent sous-jacent. Le Chapitre 6
introduit un problème d’optimisation bi-niveau pour l’apprentissage multi-tâches parcimonieux et
prouve que, avec des tâches suffisamment parcimonieuses et diverses, la représentation apprise doit
être désentrelacée. De plus, il fournit un argument formel montrant comment le désentrelacement est
bénéfique dans un contexte d’apprentissage avec peu d’exemples (few-shot learning). Le Chapitre 7
étudie une classe simple de décodeurs que nous appelons "décodeurs additifs" pour lesquels nous
pouvons prouver à la fois des garanties de désentrelacement et d’extrapolation. Les décodeurs
additifs sont intéressants à étudier car ils ressemblent aux architectures utilisées dans l’apprentissage
de représentations centrées sur les objets (object-centric representation learning) et constituent
une étape vers la compréhension de la créativité et de l’extrapolation dans les modèles génératifs
modernes.

Le Chapitre 8 discute de trois interprétations de l’identifiabilité et unifie les contributions de cette
thèse à l’aide d’un cadre simple en trois étapes mettant en évidence le rôle de l’identifiabilité pour
obtenir des garanties de généralisations. Spécifiquement, quatres types de problème sont couverts:
l’apprentissage de graphes causals, les décodeurs additifs pour l’extrapolation, l’apprentissage
multi-tâches parcimonieux et l’apprentissage semi-supervisé par regroupement (clustering). Les
relations entre ces problèmes sont rendues transparentes grâce au cadre de la théorie de la décision
statistique.

Mots clés: Identifiabilité, apprentissage de graphes causals, analyse de composantes indépendentes
non linéaire, apprentissage de représentations causales, apprentissage de représentations identifiable,
extrapolation, généralisation compositionelle, apprentissage représentations centrées sur les objets
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Abstract

The triumph of deep learning in diverse settings such as image classification, speech recognition,
natural language generation and image generation was driven mainly by increasingly large datasets,
cheap compute, architectural innovations and a vibrant open-source community which together
enabled training increasingly expressive neural networks. While this new approach yielded stunning
breakthroughs, it came at the cost of model interpretability and theoretical guarantees. This thesis is
an attempt at building models that are restricted enough to be interpretable and analyzed theoretically
while remaining sufficiently expressive to be useful in high-dimensional data modalities. The focus
of most contributions is on identifiability, the property a statistical model has when its parameters
can be recovered from the distribution it entails, up to some equivalence class. While identifiability is
central to causal inference, causal discovery and independent component analysis, its understanding
in the context of deep learning is underdeveloped. This thesis argues that studying identifiability in
deep learning and machine learning more broadly is useful to gain insights into existing models as
well as to build new ones that are interpretable and amenable to generalization guarantees. What
comes out are novel identifiability guarantees for expressive models, for both causal discovery and
representation learning.

The first and second contributions (Chapters 3 & 4) propose novel gradient-based algorithms to
learn a causal graph from observational and interventional data, respectively. These contributions
extended continuous constrained approaches from linear to nonlinear relationships and highlighted
the computational advantage of gradient-based approaches for large datasets.

The third, fourth and fifth contributions (Chapters 5, 6 & 7) provide novel identifiability
guarantees for disentanglement in representation learning. Chapter 5 shows that, in a specific deep
latent variable model, the ground-truth latent factors can be identified up to a permutation and
an element-wise bijection when an observed auxiliary variable and/or past latent factors sparsely
affect them. The result does not make parametric assumptions and characterizes the entanglement
structure as a function of the ground-truth latent causal graph. Chapter 6 introduces a bilevel
optimization problem to perform sparse multi-task learning and proves that, given sufficiently sparse
and diverse tasks, the learned representation must be disentangled. Furthermore, it provides a formal
argument for why disentanglement is beneficial in a few-shot learning setting. Chapter 7 studies a
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simple class of decoders we call “additive decoders” for which we can prove both disentanglement
and extrapolation guarantees. Additive decoders are interesting to study since they resemble
architectures used in object-centric representation learning and form a step toward understanding
creativity and extrapolation in modern generative models.

Chapter 8 discusses three interpretations of identifiability and unifies the contributions of
this thesis under a simple three-steps framework highlighting the role of identifiability to obtain
generalization guarantees. Specifically, four problem settings are covered: causal discovery, additive
decoders for extrapolation, sparse multi-task learning and semi-supervised learning via clustering.
The connections between all settings are made more transparent by framing them within statistical
decision theory.

Keywords: Identifiability, causal discovery, nonlinear independent component analysis, causal
representation learning, identifiable representation learning, extrapolation, compositional general-
ization, object-centric representation learning
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Notation
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Scalars (random or not, depending on context) . . . . . . . . . . x ∈ R
Vectors (random or not, depending on context) . . . . . . . . . . x ∈ Rn

Distribution of the random vector x . . . . . . . . . . . . . . . . . . . . Px
Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
Support of the random vector x . . . . . . . . . . . . . . . . . . . . . . . . supp(x) ⊆ Rn

Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A ∈ Rn×m

Indicator function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1(·)
Euclidean/Frobenius norm on vectors/matrices . . . . . . . . . . ∥·∥
The L2,1 norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∥A∥2,1 :=

∑m
j=1 ∥A:,j∥

The L2,0 norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ∥A∥2,0 :=
∑m

j=1 1(∥A:,j∥ ≠ 0)
Sets are upper-case or calligraphic letters . . . . . . . . . . . . . . . S, S
Vector formed with the coordinates xi, for all i ∈ S ⊆ [n] xS

Matrix formed with the entriesAi,j , for all (i, j) ∈ S × S ′ AS,S′

Scalar-valued functions are lower-case . . . . . . . . . . . . . . . . . . f : Rn → R
Vector-valued functions are lower-case bold . . . . . . . . . . . . . f : Rn → Rm
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Hessian of f : Rn → R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D2f : Rn → Rn×n

Closure of the set S ⊆ Rn w.r.t. the Rn topology . . . . . . . . S

Interior of the set S ⊆ Rn w.r.t. the Rn topology . . . . . . . . . S◦

Directed graph with node set V and edge set E . . . . . . . . . . G = (V,E)
(Conditional) independence in distribution Px . . . . . . . . . . . ⊥⊥Px

d-seperation in the graph G . . . . . . . . . . . . . . . . . . . . . . . . . . . . ⊥⊥G
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Chapter 1

Introduction

[...] all inferences from experience suppose, as their foundation, that the future will

resemble the past, and that similar powers will be conjoined with similar sensible

qualities. If there be any suspicion that the course of nature may change, and that

the past may be no rule for the future, all experience becomes useless, and can give

rise to no inference or conclusion. — Hume [1748, Section IV - Part II]

The process of making “inferences from experience”, called inductive reasoning, is at the heart
of machine learning. Induction is about using experience to infer a general rule, like when one
observes that the sun has risen every day up to now to conclude that the sun will continue rising every
day in the future. In the above quote, Hume describes the fundamental assumption underpinning all
inductive reasoning: that “the future will resemble the past, and that similar powers will be conjoined
with similar sensible qualities”, a principle now known as the uniformity of nature [Salmon, 1953,
Day, 1975]. Without it, experience would be of no use to predict the future. In contrast, deductive

reasoning refers to the process of discovering statements that are logically entailed by others, like
a mathematician deriving new theorems from known ones. While artificial intelligence as a field
certainly aims at developing agents capable of both types of reasoning, the subfields of statistics
and machine learning are fundamentally about formalizing the former: inductive reasoning.

While this is an important realization, the question of precisely how nature is uniform is left
open. A large part of machine learning research is about exploring different inductive biases, i.e.
assumptions about the data made by the learner. The assumption that observations are independent

and identically distributed (i.i.d.), which is ubiquitous to both statistics and machine learning, can
be thought of as one possible mathematization of “the uniformity of nature”: the observations made
in the past were generated from a random process that will remain the same in the future. Funda-
mental ideas such as the consistency of maximum likelihood estimation [Wasserman, 2010] and
generalization in statistical machine learning [Mohri et al., 2018, Shalev-Shwartz and Ben-David,
2014] crucially rely on this assumption. Breiman [2001] argued that, historically, statisticians had a



tendency to make stronger parametric assumptions about “how the data came about” compared to
machine learning researcher which kept the milder i.i.d. assumption. These allowed statisticians
to provide significance tests for interpretable models, such linear regression, at the cost of lesser
expressivity. In contrast, machine learning researchers have focused on developing more expressive
models with the goal of tackling high-dimensional problems such as image classification and speech
recognition where simple parametric models clearly did not apply, even if that meant interpretability
was compromised [Breiman, 2001]. The advantage of this approach is exemplified by the triumph
of deep learning, the subfield of machine learning focused on very expressive multilayered neural
networks [Goodfellow et al., 2016], in applications such as computer vision [Krizhevsky et al.,
2012, Radford et al., 2021], natural language processing [Brown et al., 2020] and image genera-
tion [Ramesh et al., 2022]. Although some successful architectures do exploit the structure present
in the data-modality they were designed for, e.g. convolutional neural networks (CNN) which
exploit the translation invariance of object classification, it seems progress in deep learning has
been driven largely by growing datasets, computational capabilities and architectural innovations
facilitating training; as opposed to exploiting structure present in the data. One can even argue that
autoregressive language models such as GPT-3 [Brown et al., 2020] makes even weaker assumptions
about the data by training on very long non-i.i.d. sequences of text. In a similar vein, the recent
visual transformer (ViT) [Dosovitskiy et al., 2021a] demonstrates that adding further capacity and
dropping the translation-invariance of CNNs can yield improved performance when coupled with
more data. Despite the impressive progress coming out of this trend towards making models more
and more expressive and training them on more and more data, machine learning models still appear
to be less data-efficient than humans [Tenenbaum et al., 2011, Lake et al., 2017, Kühl et al., 2022],
are hard to interpret, are sensitive to adversarial attacks [Szegedy et al., 2014], and lack robustness
to environmental changes [Peters et al., 2016, Magliacane et al., 2018].

This thesis is an attempt at getting the best of both worlds by proposing models that are
sufficiently expressive while being restricted enough to be interpretable and amenable to theoretical
analyses. In most contributions, we postulate the existence of some “structure” present in the data,
i.e. some specific way in which nature is uniform, and provide theoretical guarantees for when
this structure can be discovered, allowing improved interpretablity and/or improved generalization.
These theoretical results, often building on recent results in nonlinear independent component
analysis (ICA) [Hyvärinen et al., 2023], take the form of identifiability guarantees, which state
that the parameters of a statistical model can be inferred up to some equivalence class from the
distribution it entails. Once the structure is identified, the model can be more easily interpreted
and can be shown to have performance guarantees on specific downstream tasks (Chapter 8). This
approach can also be used to explain the behavior of existing models that are already known to
be successful by exposing the structure of the data they unknowingly exploit (Chapter 7). An
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emphasis is placed on making assumptions that capture the essence of the problem at hands without
compromising expressivity. However, progressively moving towards more realistic assumptions
while keeping guarantees remains an important challenge. More future directions are discussed in
Chapter 9.

Section 1.1 presents an overview of the structure of this thesis, Section 1.2 summarizes its
contributions and Section 1.3 lists the contributions excluded from this thesis.

1.1. Overview of the thesis structure
This thesis is organized around five articles, each of which has its own Prologue contextualizing

the work and briefly reviewing recent developments that followed it. In addition, this thesis includes
a background summarizing central notions (Chapter 2), a chapter exploring different interpretations
of identifiability and unifying most contributions under a three-steps framework (Chapter 8), and a
conclusion discussing perspectives for future work (Chapter 9). The five contributions are listed
below:
∗Equal contributions.

• First Contribution (Chapter 3 & Prologue):
Gradient-Based Neural DAG Learning by Sébastien Lachapelle, Philippe Brouillard,

Tristan Deleu & Simon Lacoste-Julien. This work was presented at the 8th International
Conference on Learning Representations (ICLR 2020).
• Second Contribution (Chapter 4 & Prologue):

Differentiable Causal Discovery from Interventional Data by Philippe Brouillard ∗,

Sébastien Lachapelle ∗, Alexandre Lacoste, Simon Lacoste-Julien & Alexandre Drouin. This
work was published at the 34th Conference on Neural Information Processing Systems
(NeurIPS 2020) with a spotlight.
• Third Contribution (Chapter 5 & Prologue):

Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse Actions,
Interventions and Sparse Temporal Dependencies by Sébastien Lachapelle, Pau Ro-

dríguez López, Yash Sharma, Katie Everett, Rémi Le Priol, Alexandre Lacoste and Simon

Lacoste-Julien. This work was submitted to the Journal of Machine Learning Research
in 2024. This is a significantly extended version of two works: one published at the 1st
Conference on Causal Learning and Reasoning (CLeaR 2022) and one presented at the 1st
Workshop on Causal Representation Learning at UAI 2022, the latter of which received an
oral and a best paper award.
• Fourth Contribution (Chapter 6 & Prologue):

Synergies between Disentanglement and Sparsity: Generalization and Identifiability in
Multi-Task Learning by Sébastien Lachapelle*, Tristan Deleu*, Divyat Mahajan, Ioannis
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Mitliagkas, Yoshua Bengio, Simon Lacoste-Julien and Quentin Bertrand. This work was
published at the 40th International Conference on Machine Learning (ICML 2023).
• Fifth Contribution (Chapter 7 & Prologue):

Additive Decoders for Latent Variables Identification and Cartesian-Product Ex-
trapolation by Sébastien Lachapelle∗, Divyat Mahajan∗, Ioannis Mitliagkas and Simon

Lacoste-Julien. This work was published at the 37th Conference on Neural Information
Processing Systems (NeurIPS 2023) with an oral.

1.2. Research contributions
The first and second contributions are concerned with the problem of causal discovery (Chap-

ters 3 & 4) while the third, fourth and fifth contributions are about identifiable representation
learning (Chapters 5, 6 & 7). These contributions are then unified under one simple framework in
Chapter 8 which highlights how identifiability can be seen as an intermediate step when proving
generalization guarantees.

1.2.1. Gradient-based causal discovery (Chapters 3 & 4)

The weaknesses of deep learning systems motivated a recent surge of interest in causality [Pearl,
2019, Schölkopf, 2019, Schölkopf et al., 2021, Goyal and Bengio, 2021]. In a causal model, each
variable is determined by a causal mechanism which takes as input other variables: its causal
parents. Importantly, these mechanisms are assumed to remain unchanged unless they are targeted
by an intervention, i.e. a change to the causal system affecting only a few mechanisms. This can be
seen as another formalization of the principle of uniformity of nature which relaxes the “identically
distributed” in “i.i.d.” by allowing the distribution to change, although in some limited way (only a
few mechanisms can change). The various causal relationships can be summarized by a directed
acyclic graph (DAG) called a causal graph. When this graph is known, it can be used to predict the
effect of interventions in the system, such as what will be the effect of taking some treatment on
the health status of a patient, without actually having to perform the intervention in the real world.
Measuring these effects is the concern of causal inference. However, in many applications, the
causal graph is unknown, which means it must be discovered from data. This is the problem of
causal discovery, which is the subject of the first two contributions.

Chapters 3 & 4 tackle the problem of learning a causal graph from data.1 Both contributions
build on the work of Zheng et al. [2018] which proposed to reformulate the inherently discrete
problem of searching over the space of DAGs into a continuous constrained optimization problem.
This formulation allows the exploration of drastically different optimization algorithms such as
the augmented Lagrangian procedure (Section 2.6.1). The first contribution extended this work

1Strictly speaking, Chapter 3 does not require any causal interpretation.
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to allow for nonlinear dependencies, thanks to neural networks, while the second contribution
showed how this approach can be adapted to leverage interventional data. Benefits of this approach
include a favorable computational complexity as a function of sample size, thanks to stochastic
gradient descent, (Chapter 4) and an ease of integration with deep learning models. The Prologue of
Chapter 3 and the Prologue of Chapter 4 provide further context for how these projects came about,
discuss limitations and review recent works addressing these challenges.

1.2.2. Identifiable representation learning (Chapters 5, 6 & 7)

Chapters 5, 6 & 7 provide novel identifiability guarantees in representation learning. These give
theoretical grounding for how to extract disentangled factors of variations from high-dimensional
observations such as images [Bengio et al., 2013]. The term “disentangled” is used to describe
representations in which “natural factors of variations” such as object positions, colors or sizes
are represented individually as single coordinates. Disentanglement is difficult largely due to the
problem of unidentifiability: many representations which are “not natural” yield as good a fit to
the data as the “natural one”. This issue was already present in simple linear models [Hyvärinen
et al., 2001] and got much worse with more expressive neural networks [Hyvärinen and Pajunen,
1999, Locatello et al., 2020b]. The results introduced in the following contributions always restrain
the expressivity of the model to get rid of the “unnatural representations” and assume the data is
generated from a ground-truth model, often building on the seminal work in nonlinear ICA which
first showed that the latent factors can be identified even in the nonlinear mixing case [Hyvarinen
and Morioka, 2016, 2017, Hyvärinen et al., 2019, Khemakhem et al., 2020a]. One of the main
motivations for learning disentangled representations is to make deep learning models easier to
interpret, but also to easily obtain representations that are invariant to certain factors of variations.
The following contributions also uncover novel ways in which disentanglement can be beneficial for
downstream performance (also see Chapter 8). See Section 5.7 for an exhaustive literature review
on identifiable representation learning.

Chapter 5 studies the identifiability of a deep latent variable model (Section 2.5) in which
sequences of high-dimensional observations {xt} such as images are explained by a sequence
of lower-dimensional latent factors of variations {zt} via xt = f(zt) where f is a deep neural
network. Identifiability of the latent factors is obtained by assuming that they are related together via
a sparse causal graphical model, which might include auxiliary variables such as actions and/or an
environment index. We provide conditions such that fitting this model while regularizing the latent
causal graph to be sparse entails disentanglement. While other works have leveraged independence
of latent variables in a temporal setting [Tong et al., 1993, Hyvarinen and Morioka, 2017, Klindt
et al., 2021], this contribution was the first to show that more permissive forms of sparse temporal
dependencies are sometimes enough to disentangle. This work was also among the first, concurrently
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with Lippe et al. [2022], to show that interventions on latent variables can be enough to disentangle
them, a principle previously hypothesized by Schölkopf et al. [2021] without formal proofs. The
Prologue of Chapter 5 provides further context and describes recent developments which build on
this contribution.

Chapter 6 explores a multi-task learning setting in which every prediction task has the form
y = w⊤f(x) where y is a label, x is an image, f is a representation fixed across tasks and
w is sparse weight vector that changes from one task to another. We propose solving a bilevel
optimization problem in which f is learned in the outer-problem while the task-specific weight
vector w is learned in the inner-problem, with sparsity regularization. Importantly, we show
that solving this bilevel optimization problem yields a disentangled representation, under some
conditions on both the data- and task-generating processes. We also provide a simple but rigorous
argument for why a disentangled representation is advantageous in a few-shot learning setting where
the future unknown task is sparse. In the Prologue of Chapter 6, I explain how this can be seen as a
formalization of an idea formulated by Bengio et al. [2013] and mention a few recent works which
leveraged the proof techniques we introduced.

Chapter 7 is about leveraging the additive structure of simple images consisting of multiple
objects for both disentanglement and extrapolation. In Chapter 5, disentanglement was enabled by
a restriction on the distribution of the latent factors (sparse dependencies), while here we instead
restrict the decoder f to be additive and show this makes the latent factors identifiable. Although
additive decoders are very simple and restrictive, they bear similarities with the more expressive
decoders used in object-centric learning [Locatello et al., 2020c]. Studying the identifiability of
additive decoders might help us gain some theoretical understanding as to why object-centric
decoders can perform segmentations without any supervision. In addition, we show that additivity
allows generation of images that were not part of the training distribution, but that are still on
the manifold of reasonable images. We speculate that this kind of identifiability analysis leading
to extrapolation guarantees might be applied to understand creativity in modern text-to-image
models [Ramesh et al., 2022].

1.2.3. Interpretations of identifiability and motivations for downstream per-
formance (Chapter 8)

In addition to the five articles described above, Chapter 8 explores three interpretations of
identifiability and motivates the study of identifiability as an intermediate step when proving
downstream performance guarantees. I propose a simple three-step framework highlighting the
role of identifiability for proving generalization guarantees and illustrate it with four seemingly
unrelated problem settings, three of which are based on contributions of this work. The connections
are made more rigorous by framing all four problem settings within statistical decision theory.
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1.3. Excluded publications
The above is a list of publications I have contributed to during my PhD that I decided to exclude.
• A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms by Yoshua

Bengio, Tristan Deleu, Nasim Rahaman, Rosemary Ke, Sébastien Lachapelle, Olexa Bilaniuk,

Anirudh Goyal and Christopher Pal. This work was presented at the 8th International
Conference on Learning Representations (ICLR 2020).
• On the Convergence of Continuous Constrained Optimization for Structure Learning

by Ignavier Ng, Sébastien Lachapelle, Nan Rosemary Ke and Simon Lacoste-Julien. This
work was presented at the 25th International Conference on Artificial Intelligence and
Statistics (AISTATS 2022).
• Disentanglement via Mechanism Sparsity Regularization: A New Principle for Nonlin-

ear ICA by Sébastien Lachapelle, Pau Rodríguez López, Yash Sharma, Katie Everett, Rémi

Le Priol, Alexandre Lacoste and Simon Lacoste-Julien. This work was published at the 1st
Conference on Causal Learning and Reasoning (CLeaR 2022).
• Typing assumptions improve identification in causal discovery by Philippe Brouillard,

Perouz Taslakian, Alexandre Lacoste, Sébastien Lachapelle and Alexandre Drouin. This
work was published at the 1st Conference on Causal Learning and Reasoning (CLeaR 2022)
with an oral.
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Chapter 2

Background

In this chapter, we cover some important notions necessary to understand this thesis.
• Section 2.1 provides a brief introduction to basic notions of probability such as probability

measures, random variables and (conditional) independence.
• Section 2.2 gives an introduction to the framework of statistical decision theory, maximum

likelihood estimation, the bias-variance trade-off and identifiability.
• Section 2.3 introduces causal graphical models, how they support interventional queries and

the important Markov property.
• Section 2.4 covers briefly both constraint-based and score-based approach to the problem of

causal discovery, which consist of learning a causal graph from data.
• Section 2.5 gives a quick overview of existing approaches to representation learning with a

focus on identifiability in latent variable models and independent component analysis (ICA)
• Section 2.6 covers the basics of constrained optimization, leading up to the augmented

Lagrangian method.
• Section 2.7 gives brief descriptions of two popular gradient estimators, namely REINFORCE

and the reparametrization trick.

2.1. Elementary probability theory
Probability theory is the branch of mathematics which deals with uncertainty. It provides a

coherent framework to describe quantitatively how much is known about a specific system and
provides tools to answer various queries about its precise state. Since this tool is fundamental to
the contribution of this report and to machine learning in general, we present a quick summary of
important notions. For a more in-depth presentation which avoids references to measure theory, we
refer the reader to Ross [2010].

The set of possible states a system can be in is called the sample space and is typically denoted
by Ω. Elements of Ω, denoted by ω, are called outcomes while subsets of Ω, denoted by E, are



called events. A probability measure P assigns to each event E ⊆ Ω a number P(E) ∈ [0, 1] which
described how likely it is that the outcome is in E. By definition, a probability measure must also
satisfy the following three axioms: (i) for all E ⊆ Ω, P(E) ∈ [0, 1], (ii) P(Ω) = 1, and (iii) for a
countable sequence of mutually disjoint events E1, E2, ..., we have that P(

⋃∞
i=1 Ei) =

∑∞
i=1 P(Ei).

Strictly speaking, if Ω = Rn, it is impossible to define a probability measure P (which by definition
satisfies all three axioms) that is defined over all subsets of Rn. The standard solution to circumvent
this problem is to restrict the domain of P to sufficiently nice subsets of Rn so that the axioms can
be satisfied. These nice sets are called Lebesgue measurable, but we will not present the definition
as most sets encountered in practice are Lebesgue measurable. See Durrett [2011] for details.

A random vector is a function x : Ω→ Rd and the distribution of x is a probability measure
defined as Px(E) = P(x−1(E)) for all events E ⊆ Rd, where x−1(E) denotes the preimage of E
under x. The output of a random vector x(ω) ∈ Rd can be thought of as a numerical measurement
of the state of the system ω ∈ Ω.

Throughout this chapter, we will assume that Px can be written as Px(E) =
∫

E
p(x)dx or

Px(E) =
∑

x∈E p(x) where p : Rd → [0,∞).1 In the first case, we say x is continuous and p is
called a probability density function, while in the second case, we say x is discrete and p is called a
probability mass function. The second axiom of probability measures implies that

∫
p(x)dx = 1 or∑

x p(x) = 1. In the following definitions, we use integrals everywhere, but one can replace them by
sums to obtain equivalent definitions for discrete random vectors. Note that, in many circumstances,
we define a probability measure by first specifying its density/mass function. However, one should
keep in mind that not all probability measures can be expressed with density/mass functions as we
defined here.

Notation. Given an integer n, we use the shorthand [n] to denote the set {1, ..., n}. Given a
set S ⊆ [d], we write xS to refer to the random vector containing random variables xj for j ∈ S
and write x−S to refer to the vector containing random variables xj for j ∈ [d] \ S. We use xS to
denote both the random vector xS : Ω→ R|S| and a realization xS ∈ R|S| since both meanings can
always be disambiguated from context in this thesis. When writing

∫
A
f(x)dxS for some A ⊆ R|S|

and some function f : Rd → R, we assume integration with respect to the Lebesgue measure.
We now present the notion of marginal distributions which allows us to answer probabilistic

queries concerning only a subset of variables in the system.

Definition 2.1. (Marginal density) Let x : Ω→ Rd be a random vector and let Px be its distribution

with density p. Given a proper subset S ⊆ {1, ..., d}, the marginal density of xS is

p(xS) :=
∫
Rd−|S|

p(x)dx−S . (2.1)

1Note that we use x to denote both the random vector x : Ω → Rd and a realization of the random vector x ∈ Rd,
since, in this thesis, context is always sufficient to disambiguate the two possible meanings.
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For instance, given a subset E ⊆ R|S|, the integral
∫

E
p(xS)dxS gives the probability that

xS ∈ E.
Conditional probabilities describe the probability of an event occurring given another event

occurred. This notion is important to define the notion of conditional independence.

Definition 2.2. (Conditional density) Let x : Ω → Rd be a random vector and let Px be its

distribution with density p. Given two disjoint subsets A,B ⊆ {1, ..., d}, the conditional density of

xA given xB = x0
B is

p(xA|x0
B) := p(xA,x

0
B)

p(x0
B) , (2.2)

where we assumed p(x0
B) > 0.

For instance, given a subset E ⊆ R|A|, the integral
∫

E
p(xA | xB)dxA gives the probability that

xA ∈ E given that xB = x0
B.

We now introduce the notion of (conditional) independence, a central notion in probabilistic
graphical models.

Definition 2.3. ((Conditional) independence) Let x : Ω→ Rd be a random vector and let Px be

its distribution with density p. Given two disjoint sets A,B ⊆ [d], we say xA is independent of xB

when

p(xA,xB) = p(xA)p(xB), ∀xA,xB . (2.3)

When this is the case, we write xA ⊥⊥Px xB. Given three disjoint sets A,B,C ⊆ [d], we say that

xA is conditionally independent of xB given xC whenever

p(xA,xB | xC) = p(xA | xC)p(xB | xC), ∀xA,xB,xC s.t. p(xC) > 0 . (2.4)

When this is the case, we write xA ⊥⊥Px xB | xC .

To get an intuitive understanding of the notion of independence, we can rewrite p(xA,xB) =
p(xA)p(xB) as p(xA | xB) = p(xA) (assuming p(xB) > 0) which tells us that knowing the value
of xB does not modify our belief about the value of xA. Analogously for conditional independence,
we can rewrite p(xA,xB | xC) = p(xA | xC)p(xB | xC) as p(xA | xB,xC) = p(xA | xC)
(assuming p(xB | xC) > 0) which tells us that when knowing the value of xC , additionally
knowing the value of xB does not change our belief about xA.

2.2. Statistical decision theory
At its core, statistical decision theory is a framework to analyze and compare different decision-

making strategies under uncertainty. This section is inspired by the exposition of Berger [1985] and
Lacoste–Julien et al. [2011].
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Central to this framework is the idea that the state of nature is captured by an unknown parameter
θ which is assumed to belong to a set of possible states Θ. The decision maker must take an action

a among a set of possible actions A. If the state of the world happens to be θ0 ∈ Θ and the action
a0 ∈ A is taken, then a cost ℓ(θ0,a0) is incurred. Thus, the loss function ℓ : Θ× A→ R gives the
cost incurred for all combinations (θ,a). It is further assumed that the decision maker can base
its decision on an observation D (for example a dataset of multiple observations) which reveals
information about the state of the world θ. This observation is assumed to be a realization of some
distribution Dθ. The observation D is assumed to belong to a sample space denoted by D. The
decision process is modelled by a decision rule δ : D → A which associates an action a ∈ A to
each observation D ∈ D. With this notation in mind, the loss incurred by rule δ when the state of
the world is θ and D is observed is given by ℓ(θ, δ(D)), which is random since D is random. It is
customary to analyze the expectation of this cost, which is called the risk:

r(θ, δ) := ED∼Dθ
ℓ(θ, δ(D)) .

Note that, in principle, other summarizations of the random cost ℓ(θ, δ(D)) could be analyzed,
like the probability that it is smaller that some threshold value ϵ, as is the subject of probably

approximately correct learning (PAC) [Mohri et al., 2018].
The goal of statistical decision theory is to compare various decision rules. Since the risk

r(θ, δ) depends not just on the rule δ, but also on the state of the world θ, we must “aggregate”
further. For instance, one could consider the worst-case risk maxθ∈Θ r(θ, δ) or a weighted risk of
the form

∫
r(θ, δ)π(θ)dθ where π(θ) is a probability density that can be interpreted as the belief

the decision maker holds before taking action. Interestingly, a decision rule can be optimal for one
criterion and not another, indicating that no decision rule is universally optimal.

Most problems in statistics and machine learning can be formulated in the language of decision
theory. For instance, the problem of parameter estimation corresponds to accurately guessing
θ, so that A := Θ. A natural loss function here would be ℓ(θ,a) := ∥θ − a∥2

2. In its most
standard form, D corresponds to a dataset of n independent observations (x(1), . . . ,x(n)) that are
identically distributed according to some distribution Pθ parameterized by θ ∈ Θ. In other words,
D := (x(1), . . . ,x(n)) is distributed according to Dθ := Pn

θ , where Pn
θ denotes the product measure

Pθ × · · · × Pθ (n times).
A closely related setting would be density estimation, where one cares only about finding a

probability distribution which is close to ground-truth data generating distribution. Formally, we
observe a datasetD := (x(1), . . . ,x(n)) sampled from Dθ := Pn and would like to find a distribution
P̂ that is close to P. One natural loss function for this setting would be ℓ(P, P̂) := DKL(P||P̂), where
DKL denotes the Kullback-Leibler divergence which is defined by DKL(P||P̂) :=

∫
p(x) log p(x)

p̂(x)dx
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where p and p̂ are the densities of P and P̂ w.r.t. to the Lebesgue measure (which we assume exist).2

Note that, in this setting, the unknown state of the world θ would be P itself, i.e. θ := P. Finally,
we have that the decision rule δ maps datasets D to distributions P̂.

Another example would be hypothesis testing, where A := {0, 1} corresponds to either
accepting or rejecting the null hypothesis and where ℓ could capture the cost of committing false

negative and false positive errors.
In supervised machine learning, the observation would be a dataset D :=

((x(1),y(1)), . . . , (x(n),y(n))) consisting of independent input-output pairs identically dis-
tributed according to some unknown distribution θ := P so that D ∼ Dθ := Pn. An action
corresponds to a predictor function f mapping inputs to outputs and the decision rule δ would
correspond to a learning procedure taking as input the dataset D, and outputting a predictor
f , i.e. δ(D) = f . In the case of regression, a typical choice of loss function would be
ℓ(P,f) := E(x,y)∼P∥y − f(x)∥2

2. In machine learning, this is typically called the generalization

error.

2.2.1. Maximum likelihood estimation (MLE) & identifiability

Let us focus on the problem of parameter estimation where we observe a dataset D :=
(x(1), . . . ,x(n)) sampled from Dθ := Pn

θ and must produce an estimate θ̂ that is close to the
“ground-truth” parameter θ, which we know to be in some parameter space Θ. Let us assume further
that, for every θ ∈ Θ, Pθ has a density w.r.t. the Lebesgue measure given by p(x;θ). A standard
strategy for this setting is maximum likelihood estimation (MLE), which corresponds to choosing a
distribution that maximizes the so-called likelihood function:

θ̂
(n)
MLE ∈ arg max

θ′∈Θ

n∑
i=1

log p(x(i);θ′) =: L(n)(θ′) .

In the language of decision theory, the corresponding decision rule is given by

δMLE((x(1), . . . ,x(n))) := θ̂
(n)
MLE .

It is well-known that, under regularity conditions on p(x;θ), the estimator θ̂(n)
MLE is consistent in the

sense that ℓ(θ, θ̂(n)
MLE) := ∥θ − θ̂(n)

MLE∥2
2 → 0 (in probability) as n→∞ [Wasserman, 2010]. One of

these regularity conditions requires θ to be identifiable from Pθ:

∀θ,θ′ ∈ Θ, Pθ = Pθ′ =⇒ θ = θ′ . (2.5)

2The KL-divergence can be defined more generally for arbitrary (σ-finite) measures as long as P̂(E) = 0 =⇒ P(E) =
0 for all events E (in which case we say that P̂ is absolutely continuous w.r.t. P) and is given by DKL(P||P̂) :=∫

log dP
dP̂dP where dP

dP̂ is the Radon-Nikodym derivative of P w.r.t. P̂ and the integral refers to the Lebesgue integral
with base measure P. This thesis avoids most of these technicalities by considering only continuous or discrete random
variables.
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This means that a parameter θ can always be uniquely determined from the distribution Pθ it entails.
Put differently, identifiability means that the map θ 7→ Pθ is injective. For example, in the usual
family of Gaussian distributions, the parameter (µ, σ2) is identifiable from the distribution. However,
if instead we parameterize with µ = α+β, the parameter (α, β, σ2) is not identifiable since multiple
choices of parameter yield the same distribution.

In order to understand the role of identifiability, we present an informal argument for why the
maximum likelihood estimator is consistent.

Proof sketch for the consistency of θ̂(n)
MLE. We follow the presentation of Wasserman [2010,

p.127]. Before starting, we recall a crucial property of the KL-divergence. In general, DKL(P||P̂) ≥
0 with equality if and only if P = P̂. Define

D(θ̂) := DKL(Pθ||Pθ̂) and D(n)(θ̂) := 1
n

n∑
i=1

log p(x
(i);θ)

p(x(i); θ̂)
dx .

Since D(n)(θ̂) = n−1(L(n)(θ)− L(n)(θ̂)), it is clear that maximizing the log-likelihood L(n)(θ̂) is
the same as minimizing D(n)(θ̂). In other words, the maximum likelihood estimator is a minimizer
of D(n)(θ̂). Furthermore, the law of large numbers guarantees that D(n)(θ̂)→ D(θ̂) as n→∞ (in
probability). This observation suggests that the minimizer of D(n)(θ̂) should converge in probability
to a minimizer of D(θ̂). Because the parameter θ is identifiable, θ is the unique minimizer of D(θ̂).
Hence, intuitively, we should have that θ̂(n)

MLE converges to θ in probability. While this argument
is informal, it can be made rigorous by adding further regularity assumptions [Wasserman, 2010,
p.127], but this is outside the scope of this thesis. ■

One can question the relevance of recovering the “correct” parameter θ. What if we only
care about modelling the data faithfully? This goal is better captured by the problem of density
estimation where the loss function is given by ℓ(P, P̂) := DKL(P, P̂). In fact, to formulate this
setting, one does not even have to specify a ground-truth parameter in the first place. The “state of
nature” θ, to use the terminology of decision theory, is the data-generating distribution itself, i.e.
θ := P. That being said, one can still apply MLE to estimate P. If one choose a parametric family
{Pη | η ∈ H ⊆ Rk} expressive enough to contain P, an argument exactly analogous to the one
presented above can be used to show that MLE is consistent in the sense that DKL(P||P

η̂
(n)
MLE

)→ 0
(in probability) as n→∞. Do not conflate η, which is the parameter of the model, and θ, which is
the “state of nature”. Again, regularity conditions are still required to make the argument formal,
but the key point is that we can get away without identifiability this time. In light of this observation,
is there any reason to care about identifiability? We will answer this question in Section 2.2.3 briefly
and in more depth in Chapter 8.
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2.2.2. Bias-variance trade-off

Although consistency is a good indication that a decision rule will be good for very large
datasets, it does not say anything about how fast the estimator approaches its target, which is
typically referred to as the sample complexity of the estimator. Such analyzes are important to
understand the behavior of a decision rule when the number of samples is limited, as they uncover
the famous bias-variance trade-off which is absolutely central to statistics [Wasserman, 2010] and
machine learning [Hastie et al., 2009, Mohri et al., 2018]. In the context of supervised regression
with loss ℓ(P, f̂) := E(x,y)∼P(y − f̂(x))2, one can define the bias and variance of an estimator f̂D

at x as

bias(f̂D,x) := ED(f̂D(x)− E(y | x)) (2.6)

var(f̂D,x) := ED(f̂D(x)− EDf̂D(x))2 , (2.7)

where D := ((x(1), y(1)), ..., (x(n), y(n))) ∼ Pn. One can show that f ∗(x) := E(y | x) is the
minimizer of E(x,y)∼P(y − f̂(x))2, which implies that the bias measures how close the expectation
of f̂D(x) is to the optimal prediction E(y | x). The variance measures how uncertain f̂D(x) is due
to the randomness of the dataset D, for a given input x. With simple manipulations, we arrive at the
following decomposition of the risk of the estimator:

ED,x,y(y − f̂D(x))2 = Ex[bias2(f̂D,x) + var(f̂D,x)] + Ex,y(y − E(y | x))2 , (2.8)

where the rightmost term corresponds to the error committed by the best predictor E(y | x), and is
thus irreducible and independent of the choice of estimator. The above decomposition suggests that
a good learner is one which strikes both a low bias and low variance. A standard approach is to pick
the empirical risk minimizer:

f̂D ∈ arg min
f̂∈F

1
n

n∑
i=1

(y(i) − f̂(x(i)))2 , (2.9)

where F is some hypothesis class of potential predictors. Richer hypothesis classes typically reduce
the bias while increasing the variance. This suggests that one should select a model class F that
strikes a good balance between both competing objectives. This is the bias-variance trade-off.

Not all losses allows for a bias-variance decomposition as the one shown above, but the
terms “bias” and “variance” are often used informally in more diverse contexts to refer to the
tension between the complexity of the model class and how difficult it is to estimate with finitely
many samples. Another approach which applies to more general loss ℓ is to decompose the
suboptimality gap in estimation error and approximation error. The Bayes optimal error is defined
as ℓ∗ := inff ℓ(P, f) where the infimum is taken over all (measurable) functions f . We can then
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arrive at the following decomposition

ℓ(P, f̂D)− ℓ∗ = ℓ(P, f̂D)− inf
f∈F

ℓ(P, f)︸ ︷︷ ︸
estimation error

+ inf
f∈F

ℓ(P, f)− ℓ∗︸ ︷︷ ︸
approximation error

. (2.10)

The estimation error quantifies the error due to using a finite dataset to choose f̂ as opposed to
the actual distribution P (analogous to the variance term) while the approximation error quantifies
the error due to restricting the search to predictors in F as opposed to all measurable predictors f
(analogous to the bias term). The approximation error term suggests we should pick F as large as
possible, but this generally leads to an increase in estimation error. The field of statistical machine

learning is about providing upper bounds on the estimation error that hold with high probability
(randomness comes from the dependence on D) for various function classes [Shalev-Shwartz and
Ben-David, 2014, Mohri et al., 2018]. What comes out of these analyzes is that “smaller” function
classes F lead to tighter bounds on the estimation error.

Although these types of analysis provide tight bounds for “underparameterized” methods such
as support vector machines and LASSO regression [Mohri et al., 2018], they fail to explain the
success of deep learning, which leverages large overparameterized neural networks capable of
achieving zero training loss while still striking low test loss despite having very loose upper bounds
on their estimation error [Zhang et al., 2017]. These observations have motivated more research
which have yielded insights into this apparent mystery (see e.g. Belkin [2021]).

This thesis is not concerned with these important questions and, instead, focuses on identifiability
which is somewhat orthogonal to the question of sample complexity. Of course, in practice, the finite-
sample aspect of learning will impose itself, but identifiability at least provides some confidence
that it is not completely impossible to approximately recover the ground-truth parameter θ.

2.2.3. Why study identifiability?

Finding interpretable structure in the data. Among all parameters η that fit the data-generating
distribution P perfectly, some of them might be easier to interpret than others. In that case, studying
the identifiability of a model class becomes crucial, since it provides a necessary condition for
MLE to converge to an interpretable model. More precisely, if η∗ ∈ H is considered interpretable
with Pη∗ = P and if the model {Pη | η ∈ H} is identifiable, then the only parameter that fits
the ground-truth distribution exactly is the interpretable one, and the MLE estimator is going to
converge to it in probability (under some regularity conditions).3 We now provide a few examples

3Sometimes, we get identifiability of η only up to some equivalence class (see for example Section 2.5.1). In that case,
defining what we mean by consistency is more subtle. For example, Datta and Chakrabarty [2023] shows that MLE for
probabilistic principal component analysis, which is identifiable only up to rotations of its latent space, is consistent in a
Euclidean quotient space.
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of settings where the goal is to uncover interpretable structure from the data. Note that we expand
on these examples further in Chapter 8 and provide three ways to interpret identifiability results.

• Causal discovery: The goal of causal discovery is to understand what are the causal
relationships between various features given some data. These relationships are captured
by a causal graph which consists of directed edges indicating direct causal relationships
between features. In this setting, the causal graph is itself a parameter and understanding
in which context it can be identified is of crucial importance. Indeed, if the graph is not
identifiable, then there is no hope of estimating it from data. Causality and causal discovery
are discussed in more details Sections 2.3 & 2.4.
• Disentanglement: In some context such as biology [Lopez et al., 2023], one is hoping

to find an interpretable representation of some high-dimensional observation such as cell
images or gene expression data. A common strategy is to fit a probabilistic model with
low dimensional latent variables to the observations in hope that they will correspond to
interpretable aspect of the data at hand. If the representation is not sufficiently identifiable,
interpretability can be compromised. We discuss representation learning, disentanglement
and the closely related independent component analysis problem in Section 2.5.
• Clustering: In some scientific settings, one might desire to find a reasonable partition

of the data into different clusters corresponding to meaningful categories. Similarly to
disentanglement, a standard approach to achieve this is to fit a probabilistic latent variable
model where the latent variable corresponds to the identity of the cluster. If the clusters are
not identifiable from the distribution, there is very little hope that the model is going to find
meaningful clusters, as multiple reruns of the algorithm is likely to find different clusters
each time.

Out-of-distribution generalization. Could it be that, among all models Pη that fit the data-
generating distribution P exactly, some generalize better out of distribution? The term “out-of-
distribution” is of course extremely vague as it refers to all distributions that were not seen during
training. To make some progress, one has to be specific about which distributions one would like
to generalize to. The decision theory framework allows us to do exactly that. To achieve this, we
let the “state of nature” θ capture all the distributions or tasks one should care about in a given
context, and let the loss function ℓ(θ,η) measure how well the parameter η performs on each
these tasks. In Chapter 8, we provide examples in causal discovery, disentanglement and clustering
where identifiability is a key ingredient in obtaining out-of-distribution performance guarantees.
Intuitively, all these examples consist in (i) noticing some structure in the data and the tasks one
wishes to solve, (ii) show this structure can be recovered from data via an identifiability result, and
(iii) leverage the learned structure to guarantee improved performance on a downstream task. This
is idea is developed in much more depth in Chapter 8.
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2.3. Causal graphical models
The language of probability allows us to describe the uncertainty state of a system. Here is

a simple example: “What is the probability that a patient recovers from some illness given that

she received the drug A?”. Mathematically, this question can be formalized using conditional
probabilities: p(r = 1 | d = A) where r and d stand for “recovery” and “drug”. If p(r = 1 | d =
A) > p(r = 1 | d = B), can we automatically conclude that drug A is more effective than drug
B? Put differently, if you are forced to give the same drug to everyone, should you choose drug A
to maximize the proportion of recovery? Although it might be tempting to say “yes”, the correct
answer is “not necessarily”. We now provide an informal argument for why that is.

There is a third variable that we must consider: the health status of the patient prior to taking
the drug, which we denote by h. Consider the following factorization of the joint distribution over
all three variables

p(r, h, d) = p(h)p(d | h)p(r | h, d) . (2.11)

This factorization implies no conditional independences, which means we could have chosen a
different and equally valid factorization, like p(d)p(r | d)p(h | r, d). However, the factorization of
(2.11) is “nice” in the following sense: the conditional distributions appearing in it are such that
the variables on the right of “|” have a direct causal effect on the variable on the left of “|”. Indeed,
as suggested by p(r | h, d), the health status of the patient, h, and the drug she took, d, have a
causal effect on r. Also, as suggested by p(d | h), h has an effect on d since the drug is typically
prescribed by a physician based on the health of the patient. For instance, drug B might be given
only to patients that are seriously ill because of its greater cost.

Using the definition of conditional probability, we can show that

p(r = 1 | d = A) =
∑

h

p(r = 1 | h, d = A)p(h | d = A) . (2.12)

Now imagine a different world in which everyone must take drug d = A, regardless of their health
status h. Would the model (2.11) still be a good description of this situation? No, because, in this
model, d depends on h. A better model would be the following:

pdo(d=A)(r, h, d) = p(h)1(d = A)p(r | h, d) , (2.13)

where we replaced p(d | h) by an indicator function 1(d = A), which models the fact that the drug
is chosen deterministically to be A. This new distribution can be marginalized over h and d to obtain

pdo(d=A)(r = 1) =
∑

h

p(r = 1 | h, d = A)p(h) . (2.14)

18



We now have two different quantities that are also similar: p(r = 1 | d = A) is the probability of
recovery given that the patient received drug A, while pdo(d=A)(r = 1) is the probability of recovery
in the world where everyone receives A.

When deciding which drug is more efficient in the sense that it would maximize recovery rate
among the population, we should use model (2.13) since it properly captures the fact that everyone
receives the same drug. It turns out that it is possible to have simultaneously

p(r = 1 | d = A) > p(r = 1 | d = B) and pdo(d=B)(r = 1) > pdo(d=A)(r = 1) .

This is an instance of the Simpson’s paradox, and it could occur for instance when drug B is the
most effective drug but also more expensive, so that physicians prescribe it only for seriously ill
patients. However, in a world where money was not an issue, everyone should receive this treatment
to maximize the proportion of recovery.

The distribution pdo(d) we just constructed is so important that it has a name: it is an inter-

ventional distribution. In contrast, p is called the observational distribution. We will see that the
framework of causality generalizes these ideas. Roughly speaking, causality can be separated in
two categories: causal inference and causal structure learning.

Causal inference deals with the problem of expressing queries that are interventional in nature,
like pdo(d=A)(r = 1), in terms of purely observational quantities, like p(r = 1 | d = A). We already
saw an example where this is possible. Indeed, (2.14) shows that pdo(d=A)(r = 1) can be written in
terms of factors that can be computed from the observational distribution p. The practical relevance
of this is clear: it allows us to estimate the effects of interventions without actually performing them
in the real world.

However, causal inference typically requires the knowledge of “what causes what”. Indeed,
in the example we just saw, we said that the factorization of (2.11) corresponded to the causal
structure of the problem. Importantly, we made use of this causal factorization to compute the
interventional distribution pdo(d). A different causal factorization would have led to a different pdo(d).
This structure is captured by what is called a causal graph. In our example, the causal graph could
be determined simply by common sense. In some situations, the causal graph can be uncovered
only by an expert in the field of interest. There are also situations where the causal graph is simply
unknown and must be discovered. Causal structure learning, a.k.a. causal discovery, is the problem
of discovering a causal graph from observational and, potentially, interventional data. The first and
second contributions of this thesis (Chapters 3 and 4) are mainly concerned with the causal structure
learning problem, rather than causal inference.

The rest of this section is strongly inspired by the presentation of Peters et al. [2017].
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2.3.1. Graph terminology

The causal framework is articulated via directed graphs, which make for a compact and visual
tool to describe and reason about conditional independences and causal relationships. This section
presents important graph terminology necessary to understand central notions presented later on.

A directed graph G = (V,E) consists of a node set V = {1, ..., d} and an edge set E ⊆ V 2

containing the directed edges, i.e. (i, j) ∈ E when there is a directed edge from i to j. When
(i, j) ∈ E, we sometimes write i → j ∈ G instead. A node i is a parent of j if i → j ∈ G and
a child of j if j → i ∈ G. We note the set of parents of j by πG

j . Three nodes i, j and k form
an immorality in G when i → j ∈ G and j ← k ∈ G, but i → k ̸∈ G nor i ← k ̸∈ G. We say
two graphs G1 = (V,E1) and G2 = (V,E2) share skeleton if for all (i, j) ∈ V , (i, j) ∈ E1 or
(j, i) ∈ E1 if and only if (i, j) ∈ E2 or (j, i) ∈ E2. A path is a sequence of distinct nodes i1, ..., im
such that ik → ik+1 or ik ← ik+1 for all k = 1, ...,m− 1. If ik−1 → ik and ik ← ik+1 in a path, the
node ik is a collider relative to the path. If ik → ik+1 for all k, we say there is a directed path for
i1 to im and i1 is called an ancestor of im and im is called a descendant of i1. A directed graph G
is acyclic if there is no directed cycles, i.e. there is no pair (i, j) such that there is a directed path
from i to j and a directed path from j to i. We then call G a directed acyclic graph (DAG).

2.3.2. Causal graphical models (CGM) and Interventions

We are now ready to present the formal definition of a causal graphical model (CGM).

Definition 2.4. (Causal graphical model) A causal graphical model over random variables x :
Ω→ Rd is a DAG G together with a collection of functions fj(xj|xπG

j
) such that∫

fj(xj | xπG
j
)dxj = 1 ∀xπG

j
. (2.15)

These functions induce a distribution Px over x via the density function

p(x) :=
d∏

j=1

fj(xj | xπG
j
) . (2.16)

This is referred to as the observational distribution. Given an interventional target I ⊆ V and

functions f̃j(xj | xπG
j
) for all j ∈ I (also integrating to 1), a CGM induces an interventional

distribution via the following expression:

p(I)(x) =
∏
j ̸∈I

fj(xj | xπG
j
)
∏
j∈I

f̃j(xj | xπG
j
) . (2.17)

This is referred to as the interventional distribution entailed by I . When multiple interventions are

observed, we regroup all the interventional targets into an interventional family I := (I1, ..., IK)
and use the shorthand p(k) = p(Ik) to refer to the kth interventional distribution.
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The definition of intervention presented above captures the idea of sparse or localized change
in a distribution. Each conditional can be thought of as a mechanism which can be manipulated
or intervened upon. This interpretation is sometimes referred to as the “principle of independent
mechanisms” [Peters et al., 2017, Section 2.1]. This definition generalizes the example we saw in
Section 2.3. Indeed, it can be verified that pdo(D=A) from (2.13) is an interventional distribution in
the sense of Definition 2.4.

This definition already shows how the causal graph G imposes constraints or invariances on
the distributions p, p(1), p(2), ...p(K). It should be clear that different graphs will result in different
invariances.

2.3.3. Markov property and Markov equivalence

We first present the notion of d-separation in directed graphs. This notion is important because,
in a causal graphical model, d-separations in the graph G imply analogous conditional independences
in the observational distribution Px. This provides a useful tool to read off conditional independence
statements from the graph G. See Definition 2.6 for more on this.

Definition 2.5. (Pearl’s d-separation; Pearl [1985, 1988]) In a DAG G, a path i1, ..., im is blocked
by a set S (with neither i1 nor im in it) whenever there is a node ik such that one of the following

possibility holds:

(1) ik ∈ S and

ik−1 → ik → ik+1 (2.18)

or ik−1 ← ik ← ik+1 (2.19)

or ik−1 ← ik → ik+1 (2.20)

(2) neither ik nor any of its descendant is in S and

ik−1 → ik ← ik+1 . (2.21)

Furthermore, in a DAG G, we say that two disjoints subsets of vertices A and B are d-separated by

a third (also disjoint) subset S if every path between nodes in A and B is blocked by S. We then

write A ⊥⊥G B | S.

The Markov property relates the notion of d-separation to conditional independence statements
in a distribution. This property is important since it is satisfied in causal graphical models.

Definition 2.6. (Markov Property) Given a DAG G, a distribution Px is said to satisfy

(1) the global Markov property with respect to the DAG G if

A ⊥⊥G B | C =⇒ xA ⊥⊥Px xB | xC (2.22)

for all disjoint node sets A, B and C (where ⊥⊥Px denotes conditional independence in Px),
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(2) the local Markov property with respect to the DAG G if each variable is independent of its

non-descendants given its parents,

(3) the Markov factorization property with respect to the DAG G if Px has a density p and

p(x) =
d∏

j=1

pj(xj | xπG
j
) , (2.23)

where
∫
pj(xj | xπG

j
)dxj = 1.

It turns out that these three Markov properties are equivalent if Px has a density [Lauritzen,
1996, Theorem 3.27]. In that case, we say that a distribution Px is Markov to G when it satisfies
the equivalent Markov properties of Definition 2.6. It should be clear from the definitions that, in
a CGM, the observational distribution Px is Markov to G. These conditional independences can
be thought of as constraints or invariances in a distribution, alluding again at the idea that graph
imposes constraints on a distribution.

An important question for causal discovery and structure learning more generally is whether
multiple graphs can entail the same set of conditional independences. The answer is “yes” and this
fact is captured by the notion of Markov equivalence. This fact should be depressing to anyone
willing to learn the causal graph from observations (i.e. people interested in structure learning, like
us), since it suggests that recovering the graph from the distribution is impossible (at least without
further assumptions and/or interventions).

Definition 2.7. (Markov equivalence) We denoteM(G) to be the set of all distributions that are

Markov to G. Two DAGs G1 and G1 are Markov equivalent ifM(G1) =M(G2). This is the case

if and only if G1 and G2 contains the same d-separations. The set of all DAGs which are Markov

equivalent to G is called the Markov equivalence class of G, denoted by MEC(G).
Verma and Pearl [1990] showed a simple graphical characterization of equivalence which

simplifies the verification of whether two DAGs are Markov equivalent.

Lemma 2.1. (Graphical criteria for Markov equivalence; Verma and Pearl [1990]) Two DAGs G1

and G2 are Markov equivalent if and only if they share skeletons and have the same immoralities.

The Markov property and the notion of Markov equivalence can be extended to interventional
distributions. Given an interventional family I := (I1, ..., IK), where each Ik is an interventional
target (Definition 2.4), the I-Markov property can be defined as well as the notion of I-Markov
equivalence of graphs. Appendix A.1 of Chapter 4 contains a condensed presentation of these
notions, as introduced by Yang et al. [2018].

2.4. Causal structure learning
We already saw that, when the causal graph is known, causal inference allows one to answer

a wide variety of interventional queries without having to actually perform these interventions in
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the real world. Examples of such queries include: “What will be the effect of passing a law that
requires wearing a mask in public on the daily new cases of COVID-19?” or "What will be the
impact of giving drug X on symptom Y?". In many cases, expertise in an area (or sometimes simple
common sense) can tell us a lot about what the causal graph actually is [Pearl, 2009a, Chapter 5].
But in many other situations such as genomics [Dixit et al., 2016], the causal graph is unknown and
must be inferred. This is where causal structure learning comes in.

Causal structure learning (or causal discovery) is the problem of learning a graph from obser-
vations. The observations are assumed to come from a causal graphical model with DAG G. The
observations can come from either the purely observational distribution or interventional distribu-
tions. In this section, we concentrate on the case where all observations come from the observational
distribution, i.e. without any interventions. Causal structure learning from interventions will be
covered in Chapter 4.

2.4.1. Structure identifiability

The learner is given n samples from the observational distribution Px of a CGM and wants to
infer its corresponding causal graph G. Given infinite data4, is it possible to recover the ground truth
graph G? In general, it is impossible without further assumptions, as we already briefly mentioned
in Section 2.3.3. Given infinite data, is it possible to recover even just the Markov equivalence class
of G? Again, no, unless we make further assumptions. To render the Markov equivalence class
identifiable, it is sufficient to assume faithfulness.

Definition 2.8. (Faithfulness) A distribution Px is faithful to G if for all disjoint sets A,B,C ⊆ V ,

xA ⊥⊥Px xB|xC =⇒ A ⊥⊥G B|C . (2.24)

It should be noted that faithfulness is the converse of the global Markov property (Definition 2.6).
See Peters et al. [2017, p.107] for an example of a causal model which violates faithfulness. This
assumption is considered reasonable since constructing an unfaithful distribution requires careful
“tuning” of the parameters. For instance for linear models, the set of unfaithful distributions has a
Lebesgue measure of zero [Spirtes et al., 2000, Theorem 3.2].

Intuitively, this assumption ensures that conditional independences in the distribution are actually
represented in the graph. This is useful for causal discovery since it allows one to extract information
about G by looking at conditional independences in Px. Faithfulness and the Markov property
establishes a one-to-one correspondence between conditional independences in the distribution and
d-separations in graph. This means we can infer the set of d-separations present in G, but since
many graphs have the same set of d-separations, we can only recover the Markov equivalence class
of G.

4We are referring to the hypothetical situations where the actual distribution Px is fully known.
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One can improve graph identifiability further by making stronger assumptions about the nature
of the data-generating CGM. The idea is to restrict the class of functions in which the ground
truth pj(xj | xπG

j
) belongs. In Chapter 3, we leverage such a result which was initially introduced

by Peters et al. [2014].
Having access to interventional data also improves identifiability substantially. Given some

assumptions analogous to faithfulness (Definition 2.8), it can be shown that interventions allow
to identify what is called the I-Markov equivalence class of G which is typically much smaller
than the standard Markov equivalence class. Appendix A.1 of Chapter 4 define these notions as
originally introduced by Yang et al. [2018]. Appendix A.2 goes further and provides an original
identifiability results based on the maximization of a regularized maximum likelihood score.

2.4.2. Algorithms

Knowing that a graph (or an equivalence class) can be identified from the distribution suggests
that we should be able to come up with algorithms to estimate it from observations sampled from Px.
Most algorithms fall into one of these categories: independence-based and score-based methods.
We briefly present a few instances of these types of methods.

Independence-based methods run a sequence of (conditional) independence tests to discover
which d-separations hold in the underlying ground truth DAG G. The faithfulness assumption
allows us to make the jump from (conditional) independence statements to d-separations in the
graph. Any conditional independence tests can be used as long as it is flexible enough to capture
the potentially nonlinear dependencies present in the distribution. For instance, a popular option is
the Hilbert-Schmidt independence criterion (HSIC) [Gretton et al., 2007]. Algorithms for selecting
which independence tests to run differ only by the order in which they perform the tests, which
can sometimes have a drastic effect on the running time of the algorithm. Some algorithms like
the IC algorithm [Pearl, 2009a] and the SGS algorithm [Spirtes et al., 2000] test for all possible
conditional independences of pairs given a subset while the PC algorithm [Spirtes et al., 2000] does
not have to run all tests to be exhaustive [Peters et al., 2017].

Score-based methods cast the problem of learning a DAG as an optimization problem of the
form

max
Ĝ∈DAG

S(D, Ĝ) , (2.25)

where S(D, Ĝ) is a score function to maximize and D is a dataset. A typical choice of score is the
Bayesian Information Criterion (BIC) which is given by

S(D, Ĝ) = max
θ̂

log p(D | θ̂, Ĝ)− log n
2 |Ĝ| , (2.26)
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where log p(D | θ̂, Ĝ) is the log-likelihood function given some model (e.g. Gaussian linear model)
and |Ĝ| is the number of parameters to estimate with graph Ĝ. The number of parameters tends to
grow with the size of the graph, for instance if we are considering a Gaussian linear model, each
edge in the graph requires its own scalar parameter, i.e. |Ĝ| is the number of edges. This term is
encouraging sparsity.

The discrete optimization problem in (2.25) presents a serious computational challenge since
the space of DAGs grows super-exponentially in the number of nodes and the set of feasible directed
graphs is rather involved. When we are only looking for a Markov equivalence class, the problem
can be modified to search directly in the space of Markov equivalence classes, which reduces
the search space substantially. This is the approach proposed by the Greedy Equivalence Search
algorithm (GES) [Chickering, 2003]. This approach has been extended to support interventional
data as well [Hauser and Bühlmann, 2012].

In some situations, recovering the causal graph only up to its Markov equivalence class is
unsatisfactory. To obtain exact identifiability of the graph, we might want to restrict the model class.
The causal additive model (CAM) [Bühlmann et al., 2014] employ this approach and search the
space of DAG greedily. To allow for large graphs (50 nodes or more), CAM relies on a preliminary

neighborhood selection phase which blacklists some edges in the graph via statistical tests before
starting the search, thus reducing the search space.

The continuous-constrained optimization approach. The algorithms presented so far all
embraced the discrete nature of the problem head on by performing some form of greedy opti-
mization. In Section 3.2.3, we present a formulation of the structure learning problem proposed
by Zheng et al. [2018] which recast this combinatorial problem as a continuous-constrained opti-
mization problem. This formulation allows us to explore drastically different learning algorithms
based on numerical optimization. The challenges of discrete optimization are replaced by those of
nonconvex-constrained optimization. In its first iteration, the approach assumed a Gaussian linear
model and could not make use of interventional data. The contribution of Chapter 3 shows how
this formulation can be extended to support nonlinear relationships with neural networks while the
contribution of Chapter 4 shows this approach can support various types of interventional data and
can be extended to work with powerful density estimators such as normalizing flows [Rezende and
Mohamed, 2015].

2.5. Representation learning
The success of deep learning [Goodfellow et al., 2016] is attributable in part to the idea of

learning the features that are useful for a given task instead engineering them. This strategy comes
with all sorts of computational and statistical challenges, but these were largely overcame, as was
exemplified by the groundbreaking success of the AlexNet architecture at the ImageNet Large Scale
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Visual Recognition Challenge [Krizhevsky et al., 2012]. The initial successes of deep learning were
initially limited to the supervised learning regime, where a very large dataset of input/label pairs
(x, y) is used to train a neural network to predict the label y from the input x. The intermediate
representations learned in this way tend to be tightly tailored to the task on which it was trained and
has limited utility when used for other tasks.

Representation learning can be understood as going one step further, i.e. learning a repre-
sentation that is suitable for many tasks, sometimes even without knowing what these will be. A
pre-trained representation can be used in a downstream task for instance by training a linear classifier
to predict the labels from the representation using a relatively small dataset of labelled samples from
the new task. One can also decide to either fine-tune or freeze the pre-trained representation when
doing so. A plethora of strategies for representation learning have been contributed to the literature.
Murphy [2023] classifies these approaches into the following categories:

(i) Supervised representation learning and transfer corresponds to reusing the representation
learned via supervised learning, sometimes in a multi-tasks setting.

(ii) Latent variable models are probabilistic models of the form p(x | z)p(z) where z is hidden
and taken to be the representation of the observation x.

(iii) Autoregressive models are probabilistic models of the form
∏dx

i=1 p(xi|x<i), which include
neural architecture such as Transformers, where the representation is taken to be the output
of an intermediate hidden layer.

(iv) Autoencoders consists in minimizing a loss of the form E∥x− Dec(Enc(x))∥2 where the
representation of x is taken to be Enc(x), which has a much lower dimensionality than x.

(v) Self-supervision refers to various approaches in which a model is trained to solve a “synthetic”
task such as denoising an input or classifying which transformation an input received.

(vi) Contrastive learning can be considered as a special case of the above in which the synthetic
task consists in classifying which pairs of inputs are positive, and which are negative. For
example, a positive pair could be an image together with its transformed version (e.g. rotated
or cropped) while a negative pair could be two completely unrelated images. When image-
caption pairs are available for training, positive pairs would be correctly matched while the
negative pairs would be incorrectly matched. The latter is the strategy employed to train
the now popular CLIP model [Radford et al., 2021]. In these models, the classification
logit for a pair (x,x′) is typically given by f(x)⊤g(x′) where f and g are neural networks
outputting the representations of x and x′.

Chapter 5 will be mainly concerned with latent variable models, Chapter 6 with representation
learning via multi-task learning, and Chapter 7 with autoencoders. All three of these contributions
explore the identifiability of the representations learned in each of these settings. To explain what
we mean by representation identifiability, we will focus on the case of latent variable models.
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2.5.1. Disentanglement & identifiability in latent variable models

In some cases, the primary goal of representation learning is to discover interesting structure in

the data, as opposed to learning a representation that is suitable for multiple downstream tasks. For
instance, we might want to extract an interpretable representation of brain images that exhibits a low-

dimensional and interpretable description of some neural processes [Monti and Hyvärinen, 2018]. In
fact, many biological systems are still not fully understood and could benefit from machine learning
similarly [Lopez et al., 2023]. This idea is sometimes referred to as disentanglement [Bengio et al.,
2013, Higgins et al., 2017, Locatello et al., 2020a], where the goal is to learn a representation in
which each coordinate corresponds to a so-called “natural factor of variation” of the dataset. A
canonical example would be to learn a representation of images in which the positions of the objects,
their colors and orientations are represented as individual coordinates. Various strategies to achieve
this have been contributed to the literature, with many of them based on heuristics. Locatello et al.
[2020a] brought to light the identifiability problem in disentangled representation learning and
motivated multiple works to pursue more principled strategies backed by identifiability guarantees
(see Sections 5.7, 6.4 & 7.2 for more exhaustive literature reviews).

We recall the definition of identifiability covered in Section 2.2.1. Given a parameterized family
of distributions {Pθ | θ ∈ Θ}, we say that θ is identifiable from Pθ if the following holds:

∀θ, θ̂ ∈ Θ, Pθ = Pθ̂ =⇒ θ = θ̂ , (2.27)

or, in other words, the map θ 7→ Pθ is injective. This means that, given the distribution Pθ, we
can determine unambiguously which parameter θ gave rise to it. In a learning setting where
we assume that the ground-truth data distribution is Pθ and that we managed to learn it exactly
such that Pθ̂ = Pθ (for instance with maximum likelihood estimation in the infinite data regime),
identifiability allows us to conclude that θ̂ = θ. Typically, when the model Pθ has many degrees
of freedom, identifying θ exactly might be impossible, so instead we aim to identify θ up to some

equivalence relation ∼. This yield the following definition:

∀θ, θ̂ ∈ Θ, Pθ = Pθ̂ =⇒ θ ∼ θ̂ . (2.28)

We will see concrete examples of equivalence relations in a few paragraphs.
In many settings, we only care about finding a model Pθ̂ that describes faithfully the data and

have no interest in whether or not we found the “right” (equivalence class of) θ. In some sense,
all the θ̂ such that Pθ̂ = Pθ are equally valid in that they describe the data distribution perfectly.
That being said, it is possible that, among all parameters θ̂ that fits the data perfectly, some of them
are more interpretable than others. This is where identifiability becomes interesting. Chapter 8
provides further motivations to study identifiability, especially regarding downstream performance.
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Let me make the discussion more concrete by considering a latent variable model of the form
x = f(z) where z ∼ Pz. In that case, we set our parameter to be θ := (f ,Pz) and our parameter
space to be Θ := F × P , where F is some class of functions (assume bijective for now) and P is
some class of distributions Pz. This model induces a distribution over x given by Pθ = Pz ◦ f−1,
i.e. the pushforward of Pz under f . Assume that the specific model θ = (f ,Pz) is interpretable,
in the sense that each coordinate of z corresponds to natural factors of variations in the data, such
as object positions, colors and orientations. Note that Chapters 5, 6 & 7 expand further on what it
could mean to be interpretable in different settings. Now, notice that we can very easily find another
model θ̂ = (f̂ , P̂z) that (i) yields exactly the same distribution over x, and (ii) that does not have
necessarily an interpretable representation. For any invertible transformation v, we can choose

f̂ := f ◦ v−1 and P̂z := Pz ◦ v−1 (the latter is the distribution of v(z) when z ∼ Pz) ,

where v is an arbitrary bijective transformation. Intuitively, we are simply applying an invertible
transformation v on z and undoing it at the input of f . Of course, this is not changing the distribution
over x since, formally, we have

Pθ̂ = P̂z ◦ f̂−1 = Pz ◦ v−1 ◦ v ◦ f−1 = Pz ◦ f−1 = Pθ .

And, importantly, the representation of x in both models, f−1(x) and f̂−1(x), could be drastically
different. Indeed, we have that f̂−1(x) = v ◦ f−1(x), i.e. both representations are related by v.
This means that f̂−1(x) might not be interpretable, even if (f̂ , P̂z) matches the data distribution
exactly. This is problematic, since it shows that simply finding a parameter θ̂ that perfectly fits the
data distribution is not enough to guarantee that the learned model is interpretable.

We would then like to restrict the classes F and/or P such that the only transformations v that
keep f ◦ v−1 in F and Pz ◦ v−1 in P are “trivial indeterminacies”. In many settings, we tolerate
element-wise transformations and permutations of the coordinates. This suggests a weaker notion
of identifiability tailored to disentanglement:

∀(f ,Pz), (f̂ , P̂z) ∈ F × P ,P(f ,Pz) = P(f̂ ,P̂z) =⇒ f = f̂ ◦ d ◦ P , (2.29)

where d is some element-wise transformation and P is some permutation. This is weaker than
(2.27) because we do not require that f = f̂ , but only that f and f̂ are related by a permutation P
and an element-wise transformation d.

In many works on identifiable representation learning, there is an asymmetry between the
assumptions made on the ground-truth model and the learned model. Instead of (2.29), these results
typically show

∀(f ,Pz) ∈ F × P , (f̂ , P̂z) ∈ F̂ × P̂ ,P(f ,Pz) = P(f̂ ,P̂z) =⇒ f = f̂ ◦ d ◦ P , (2.30)

28



where F × P ⊆ F̂ × P̂ , i.e. the assumptions on the ground-truth are stronger than on the learned
model. This latter point will be illustrated in Sections 2.5.2 & 2.5.3. These results are applied to a
learning scenario as follows: we assume that the data generating process, or ground-truth, is some
unknown model (f ,Pz) ∈ F × P . Then, we search in F̂ × P̂ for a model (f̂ , P̂z) that fits the data
distribution, i.e. P(f̂ ,P̂z) = P(f ,Pz).5 Then, (2.30) guarantees that the function f̂ we found is the
same as the ground-truth f , up to permutation and element-wise rescaling. Note that we could also
just search over F × P to fit the ground-truth distribution, but in practice, F̂ × P̂ is typically much
easier to optimize over, and results of the form (2.30) guarantee that this is in fact enough.

The discussion so far has been fairly abstract. In Section 2.5.2 & 2.5.3, we will see how linear
independent component analysis (ICA) fits nicely into this framework.

A lot of the current research in this area, including this thesis, boils down to finding expressive
hypothesis classes F̂ × P̂ that remain identifiable in the sense of (2.30). The strategy employed in
Chapter 5 consists in restricting the distribution over z to have sparse dependencies, either with
an observed auxiliary variable or a past latent vector (if the data present temporal dependencies).
Chapters 6 & 7 do not fit exactly in the latent variable model setting describe above, but they are
similar in spirit. Chapter 6 considers a multi-task setting in which a common representation is used
across tasks. The identifiability up to permutation and element-wise rescaling is guaranteed by the
fact that each task requires only a sparse subset of the features to be solved. Chapter 7 considers an
autoencoder approach in which identifiability is ensured by restricting F̂ to be the set of additive
functions. We note that all five contributions of this thesis will be unified further under the umbrella
of statistical decision theory in Chapter 8.

2.5.2. Independent component analysis

Independent component analysis (ICA) [Hyvärinen et al., 2001] consists in finding a linear
transformation L of the data x such that the transformed data Lx has mutually independent
components. Many principles have been proposed to achieve this, like maximizing non-Gaussianity,
minimizing mutual information or fitting a likelihood model with independent latent factors. The
following discussion is limited to the identifiability of ICA as a latent variable model. Details about
various algorithms for ICA can be found in Hyvärinen et al. [2001].

In the language established in the previous section, ICA assumes that

F̂ := {linear maps from Rdz to Rdx} (2.31)

P̂ := {Pz such that the factors zi are mutually independent} .

5In practice, this could be achieved approximately by doing maximum likelihood estimation (Section 2.2.1).
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Note that throughout, we assume dz ≤ dx. Furthermore, the standard result assumes that the
ground-truth model (f ,Pz) belongs to

F := F̂ ∩ {injective maps} (2.32)

P := P̂ ∩ {Pz with at most one Gaussian marginal and no deterministic marginals} ,

so that F × P ⊆ F̂ × P̂ , as discussed in Section 2.5.1.
The goal of this section will be to established identifiability of linear ICA, in the sense of (2.30).

Formally, we want to show the following.

Corollary 2.1. Let (A,Pz) ∈ F ×P and (Â, P̂z) ∈ F̂ × P̂ where F , F̂ ,P , P̂ are defined in (2.31)
and (2.32). Then, whenever P(Â,P̂z) = P(A,Pz), we have A = ÂDP where P is a permutation

matrix andD is an invertible diagonal matrix.

The proof of this result, which will be presented at the end of this section, relies on a few
intermediary results. We start with the following lemma in which we use “ d=” to denote equality in
distribution.

Lemma 2.2. Let (A,Pz) ∈ F × P and (Â, P̂z) ∈ F̂ × P̂ where F , F̂ ,P , P̂ are defined in (2.31)
and (2.32). Then, whenever P(Â,P̂z) = P(A,Pz), we have that (i) Range(Â) = Range(A), and (ii)

ẑ
d= Â†Az where ẑ ∼ P̂z, z ∼ Pz and Â† is the pseudo-inverse of Â.

Proof We start with P(Â,P̂z) = P(A,Pz), which is equivalent to Âẑ d= Az. This implies that
supp(Âẑ) = supp(Az). This further implies that Âsupp(ẑ) = Asupp(z).6 Note that, because
z has independent components, we have that supp(z) =

∏dz

i=1 supp(zi). Furthermore, because
no component zi is deterministic, we have that, for all i, there exists two distinct values
α0

i , α
1
i ∈ supp(zi). This means that supp(z) contains {α0

1, α
1
1} × · · · × {α0

dz
, α1

dz
}, which can be

thought of as the vertices of a dz-dimensional hyperrectangle. This implies that supp(z) must
contain a basis of Rdz , which we denote by z(1), . . . ,z(dz) ∈ supp(z). We can collect these
vectors into matrices Z := [z(1) · · · z(dz)] and, since Âsupp(ẑ) = Asupp(z), we know there exists
Ẑ := [ẑ(1) · · · ẑ(dz)] such thatAZ = ÂẐ. We have thatA is full column-rank by hypothesis and
Z is invertible since its columns are linearly independent. This meansAZ has full column-rank,
and so does ÂẐ. This implies that Â must also have full column-rank and Ẑ must be invertible.
This means that Â and A must have the same range (same image). Since Â has full-column
rank, its pseudo-inverse, Â†, is a left-inverse for Â, i.e. Â†Â = I . We can thus write ẑ d= Â†Az.

The identifiability of linear ICA relies on the Darmois-Skitovich theorem, which we state without
proof. For a recent treatment of these classical results, including proofs, see Pavan and Miranda
[2018].

6We have that supp(Az) = Asupp(z) by Lemma 5.6 in the Appendix of Chapter 5 combined with the fact that finite
dimensional linear subspaces are closed.
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Theorem 2.1 (Darmois-Skitovich, Darmois [1953], Skitivic [1953]). Let xj, j = 1, . . . , n with

n ≥ 2 be mutually independent random variables and let αj, βj be constants. Let y1 :=
∑n

j=1 αjxj

and y2 :=
∑n

j=1 βjxj be two independent random variables. Then, whenever αjβj ̸= 0, the variable

xj is either constant or Gaussian.

The following presents the crux of the work and makes use of the Darmois-Skitovich theorem.

Theorem 2.2 (Identifiability of linear ICA, Comon [1992]). Suppose that z is a dz-dimensional

random vector (dz ≥ 2) of mutually independent and non-deterministic random variables in which

at most one component is Gaussian (in other words, the distribution of z is in P). Let V ∈ Rdz×dz

be an invertible real matrix and let y := V z. If the components of y are mutually independent,

then V = DP for some invertible diagonal matrixD and permutation matrix P .

Proof The matrix cov(z) is diagonal (by independence) and invertible (all zi are non-deterministic
and thus have positive variance). Furthermore, the covariance matrix of y is diagonal (independence)
and has the form cov(y) = V cov(z)V ⊤. Since V and cov(z) are invertible, so is cov(y). We can
thus write

I = cov(y)− 1
2V cov(z) 1

2 cov(z) 1
2V ⊤cov(y)− 1

2 (2.33)

= (cov(y)− 1
2V cov(z) 1

2 )(cov(y)− 1
2V cov(z) 1

2 )⊤ (2.34)

= MM⊤ , (2.35)

where we defined M := cov(y)− 1
2V cov(z) 1

2 and showed it is orthogonal. We thus have that
V = cov(y) 1

2Mcov(z)− 1
2 . One can rewrite y = V z as

ȳ = Mz̄ , (2.36)

where ȳ := cov(y)− 1
2y and z̄ := cov(z)− 1

2z. Of course, ȳ and z̄ still have independent components
(because cov(y)− 1

2 and cov(z)− 1
2 are diagonal) and z̄ has still at most one Gaussian component (for

α ∈ R \ {0}, we have x Gaussian iff αx Gaussian) and none of its components are deterministic
(cov(z)− 1

2 has no zero on its diagonal). Notice that ȳ1 =
∑n

j=1M1,jz̄j and ȳ2 =
∑n

j=1M2,jz̄j

are independent. Then, by the Darmois-Skitovich theorem, wheneverM1,jM2,j ̸= 0, z̄j must be
constant or Gaussian. But since none of the z̄j are constant by hypothesis, z̄j must be Gaussian.
Since we allow for only one Gaussian z̄j , there has to be at most one j0 such thatM1,j0M2,j0 ̸= 0.
But sinceM is orthogonal, its rows must be orthogonal. Hence, 0 = ⟨M1,·,M2,·⟩ = M1,j0M2,j0 .
We thus have that the first and second rows ofM cannot have nonzero entries at the same locations.
The same argument can be repeated for every pair of rows ofM . Hence, all pairs of rows do not
have nonzero entries at the same location. The only way this is possible is ifM is a permutation P .
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Thus,

V = cov(y) 1
2P cov(z)− 1

2 (2.37)

= cov(y) 1
2 P cov(z)− 1

2P⊤︸ ︷︷ ︸
diagonal

P (2.38)

= DP , (2.39)

whereD := cov(y) 1
2P cov(z)− 1

2P⊤ is diagonal.

We are now ready to prove Corollary 2.1, which is a simple matter of putting everything we saw
together.
Proof (Corollary 2.1) Let z ∼ Pz and ẑ ∼ P̂z. Lemma 2.2 implies that ẑ d= Â†Az, where
V := Â†A is invertible (since both Â† andA are full rank). The random vector z has no constant
component and at most one Gaussian component and y := V z is distributed according to P̂z, which
has mutually independent components. This means we can apply Theorem 2.2 to get that V = DP .
Since Â has full column-rank, its pseudo-inverse has a closed form expression: Â† = (Â⊤Â)−1Â⊤.
We thus have the following:

Â†A = DP (2.40)

(Â⊤Â)−1Â⊤A = DP (2.41)

Â(Â⊤Â)−1Â⊤︸ ︷︷ ︸
projection on the range of Â

A = ÂDP . (2.42)

But since Â andA have the same range, Â(Â⊤Â)−1Â⊤A = A, and thusA = ÂDP .

2.5.3. AMUSE: ICA via temporal correlations

I now present an alternative approach to ICA which leverages temporal correlations as opposed
to non-Gaussianity, as in standard ICA. Although this strategy was originally introduced by Tong
et al. [1990], the following presentation was in part inspired from [Hyvärinen et al., 2001]. This
identifiability result can be thought of as a precursor to the contribution of Chapter 5, where we
relax the linearity of the mixing function and the independence of the latent factors.

We are going to make the assumption that we observe a random sequence x := (xt)∞
t=1 explained

by a latent sequence z := (zt)∞
t=1 via xt = Azt whereA ∈ Rdx×dz with dz ≤ dx. Furthermore, we

will assume that (zt)∞
t=1 is a weak-sense stationary process.

Definition 2.9. A sequence of random vectors (zt)∞
t=1 is said to be weak-sense stationary (WSS) if

E[zt], cov(zt) and cov(zt, zt−τ ) do not depend on t.
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We note that cov(zt, zt−τ ) can depend on τ , the time lag index. Importantly, we also assume
that the matrices cov(zt, zt−τ ) are diagonal for all 0 ≤ τ < t (and all t, but this is implied by the
WSS condition). This last condition indicates a weak form of mutual independence between the
sequences (zt

i)∞
t=1. We summarize these assumptions using the framework introduced before:

P̂ := {Pz s.t. (zt)∞
t=1 is WSS and cov(zt, zt−τ ) is diagonal for all 0 ≤ τ < t}

F̂ := {linear mapsA such thatA(zt)∞
t=1 = (Azt)∞

t=1} . (2.43)

We will require the data-generating process to satisfy these slightly stricter assumptions:

P := P̂ ∩
{
Pz s.t. for all i, var(zt

i) > 0 and ∃τ s.t. the
{

cov(zt
i , z

t−τ
i )

var(zt
i)

}dz

i=1
are distinct

}
F := F̂ ∩ {injective maps} . (2.44)

We now show that this model is identifiable and discuss practical considerations later on.

Theorem 2.3. Let (A,Pz) ∈ F ×P and (Â, P̂z) ∈ F̂ × P̂ where F , F̂ ,P , P̂ are defined in (2.43)
and (2.44). Then, whenever P(Â,P̂z) = P(A,Pz), we have A = ÂDP where P is a permutation

matrix andD is an invertible diagonal matrix.

Proof Let z ∼ Pz and ẑ ∼ P̂z with xt := Azt and x̂t = Aẑt.
First, we have that cov(xt) can be diagonalized with an orthogonal matrix since it is symmetric,

i.e. cov(xt) = UΛU⊤ where U is orthogonal and Λ is diagonal. Since cov(xt) is positive
semidefinite, the diagonal entries of Λ are nonnegative. Since cov(xt) = Acov(zt)A⊤ whereA is
full column-rank and cov(zt) has no zero entries on its diagonal, the rank of cov(xt) is dz. Thus, Λ
has dz positive values on its diagonal. Let Λ̄ ∈ Rdz×dz be the same as Λ but where we truncated the
lines and columns corresponding to the zero diagonal entries, and analogously for Ū . We can thus
write cov(xt) = Ū Λ̄Ū⊤.

Now define x̄t := Λ̄−1/2Ū⊤xt, so that dim(x̄t) = dz, and z̄t := cov(zt)−1/2zt. Note that

x̄t = Λ̄−1/2Ū⊤Azt = Λ̄−1/2Ū⊤Acov(zt)1/2z̄t = Mz̄t , (2.45)

where we definedM := Λ̄−1/2Ū⊤Acov(zt)1/2. Note thatM is orthogonal since

MM⊤ = Λ̄−1/2Ū⊤Acov(zt)A⊤Ū Λ̄−1/2 (2.46)

= Λ̄−1/2Ū⊤cov(xt)Ū Λ̄−1/2 (2.47)

= Λ̄−1/2Λ̄Λ̄−1/2 = I . (2.48)
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We now investigate the lagged covariance between x̄t and x̄t−τ where τ is given by the condition
on the ground-truth Pz in (2.44).

cov(x̄t, x̄t−τ ) = cov(Mz̄t,Mz̄t−τ ) (2.49)

= Mcov(z̄t, z̄t−τ )M⊤ (2.50)

= Mcov(zt)−1/2cov(zt, zt−τ )cov(zt−τ )−1/2M⊤ (2.51)

= Mcov(zt, zt−τ )cov(zt)−1M⊤ (2.52)

Furthermore, define x̃t := Λ̄−1/2Ū⊤x̂t and z̃t := cov(ẑt)−1/2ẑt. Notice that

x̃t = Λ̄−1/2Ū⊤Âẑt = Λ̄−1/2Ū⊤Âcov(ẑt)1/2z̃t = M̂z̃t , (2.53)

where we defined M̂ := Λ̄−1/2Ū⊤Âcov(ẑt)1/2. Of course, since P(Â,P̂z) = P(A,Pz), we have that
cov(xt) = cov(x̂t). Using steps analogous to equations (2.46) to (2.48) the fact that cov(xt) =
cov(x̂t), we can show that M̂ is orthogonal.

Moreover, we can use steps analogous to equations (2.49) to (2.52) to show that

cov(x̃t, x̃t−τ ) = M̂cov(ẑt, ẑt−τ )cov(ẑt)−1M̂⊤ . (2.54)

Since cov(x̄t, x̄t−τ ) = cov(x̃t, x̃t−τ ), we have that

Mcov(zt, zt−τ )cov(zt)−1M⊤ = M̂cov(ẑt, ẑt−τ )cov(ẑt)−1M̂⊤ . (2.55)

Note that cov(zt, zt−τ )cov(zt)−1 is diagonal with distinct values (by hypothesis). This decom-
position indicates that these diagonal elements are eigenvalues of the matrix cov(x̄t, x̄t−τ ) with
associated eigenvectors given by the columns ofM . Because these dz eigenvalues are distinct, each
associated eigenspace is one dimensional. This means that the matrix of orthogonal eigenvectors
M is unique up to permutation of its columns and sign flips. This implies thatM = M̂D̄P where
P is a permutation matrix and D̄ is a diagonal matrix made of 1 and -1. We can thus write

M = M̂D̄P (2.56)

Λ̄−1/2Ū⊤Acov(zt)1/2 = Λ̄−1/2Ū⊤Âcov(ẑt)1/2D̄P (2.57)

ŪŪ⊤Acov(zt)1/2 = ŪŪ⊤Âcov(ẑt)1/2D̄P . (2.58)

Note that ŪŪ⊤ is the projection on Range(Ū). We have that Range(Ū) = Range(A) =
Range(Â) because

Acov(zt)A⊤ = cov(xt) = Ū Λ̄Ū⊤ = cov(x̂t) = Âcov(ẑt)Â⊤ . (2.59)
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Hence, the projection ŪŪ⊤ act as the identity when left-multiplyingA and Â, so that

Acov(zt)1/2 = Âcov(ẑt)1/2D̄P (2.60)

A = Âcov(ẑt)1/2D̄P cov(zt)−1/2 (2.61)

A = Âcov(ẑt)1/2D̄ P cov(zt)−1/2P⊤︸ ︷︷ ︸
diagonal

P (2.62)

A = ÂDP , (2.63)

whereD := cov(ẑt)1/2D̄P cov(zt)−1/2P⊤ is diagonal.

Practical considerations: The proof strategy presented above suggests a natural algorithm to
estimate the matrixA up to permutation and rescaling. First, estimate cov(xt) from sample, find
its dz largest eigenvalues and project the observation doing x̄t := Λ̄−1/2Ū⊤xt (where Ū Λ̄Ū⊤ is
the “truncated” decomposition of the estimated covariance). Then, we can estimate cov(x̄t, x̄t−τ )
empirically and compute its orthogonal eigendecomposition MDM⊤. Assuming “infinitely

many samples” and that the values
{

cov(zt
i ,zt−τ

i )
var(zt

i )

}dz

i=1
are distinct in the data-generating process, we

can conclude that this decomposition is unique up to permutation and sign flips so that MP ≈
Λ̄−1/2Ū⊤Acov(zt)1/2, allowing us to computeA as a function ofM (up to permutation).

Although the matrix cov(x̄t, x̄t−τ ) is symmetric, its finite-sample estimation might not be, thus
preventing us from computing its orthogonal eigendecomposition. To sidestep this problem, one
can compute the orthogonal decomposition of ˆcov(x̄t, x̄t−τ ) + ˆcov(x̄t, x̄t−τ )⊤ which is symmetric.
This adjustment does not change the argument since

(cov(x̄t, x̄t−τ ) + cov(x̄t, x̄t−τ )⊤)/2 = Mcov(zt, zt−τ )cov(zt)−1M⊤ . (2.64)

One can also use simultaneous diagonalization to leverage multiple distinct time lags τ . See
Hyvärinen et al. [2001] and Tong et al. [1990] for more details.

2.5.4. Nonlinear ICA

A natural question at this point is whether we can extend the identifiability of ICA to nonlinear
functions f . I.e., if we take F to be the set of all invertible transformations from Rdz to Rdx , and
keep P the same, do we still get identifiability up to permutation and element-wise functions? It
turns out this is not the case. Under mild conditions, Hyvärinen and Pajunen [1999] showed that,
given a random vector x ∈ Rdx , it is always possible to find a transformation g : Rdx → Rdx such
that g(x) has independent components, and this set of solution is highly non-unique. For instance,
for any given i, we can choose g so that g(x)i = xi.
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Recent efforts, including the contributions of this thesis, have explored various model classes
in hope of finding expressive models that remain identifiable in the sense of (2.30), sometimes
dropping the assumption of mutual independence. We cover these works in the literature reviews of
Chapters 5, 6 & 7.

2.6. Constrained optimization
At the heart of the continuous-constrained methods for causal discovery is the augmented

Lagrangian method which transforms a constrained optimization problem into a sequence of un-
constrained problems for which the solutions converge to the solution of the original constrained
problem (see Bertsekas [1999] for regularity conditions). Before diving into the augmented La-
grangian approach, we review concepts of constrained optimization necessary for its understanding.
This section is inspired by the presentation of Bertsekas [1999]

In its most general form, a constrained optimization problem is written as:

min
x
f(x) subject to x ∈ X , (2.65)

where X is the feasible set. In this presentation, we always assume f ∈ C1 and the feasible set is
compact and contained in Rn.

A point x∗ ∈ X is a global minimum of (2.65) if f(x∗) ≤ f(x) ∀x ∈ X and is a local

minimum of (2.65) if there exists a scalar ϵ > 0 such that, f(x∗) ≤ f(x) ∀x ∈ X ∩Bϵ(x∗), where
Bϵ(x∗) = {x | ||x− x∗||2 ≤ ϵ}, i.e. it is the closed ball of radius ϵ centered at x∗.

For simplicity, we consider only problems in which X can be written with an equality constraint,
i.e.

X = {x ∈ Rn | h(x) = 0} , (2.66)

where h : Rn → Rm is a function assumed to be C1. We assume m < n, i.e. the number of
constraints is smaller than the number of variables. The problem can be rewritten as

min
x
f(x) subject to h(x) = 0 . (2.67)

We denote by∇f(x) ∈ Rn the gradient of f and by Dh(x) ∈ Rm×n the Jacobian matrix of h.
The definition of local minimum we presented does not suggest an obvious algorithm to perform

optimization. The following proposition provides a standard first-order necessary condition for a
point to be a local minimum of (2.67), which lends itself more naturally to numerical optimization.

Proposition 2.1 (First-order necessary conditions). Let x∗ ∈ X be a local minimum such that

Dh(x∗) is full rank. Then, there exists a vector λ∗ ∈ Rm, called the Lagrange multiplier of x∗,
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such that the following equation holds:

∇f(x∗)⊤ + λ∗⊺Dh(x∗) = 0 . (2.68)

In practice, many algorithms will find a feasible point satisfying (2.68), also called a stationary

point of (2.67). This is considered satisfying even though a stationary point will not necessarily be
a local minimum (e.g. could be a saddle point or even a local maximum).

2.6.1. The augmented Lagrangian method

We are now ready to present an algorithm to find a stationary point of (2.67). The augmented

Lagrangian method transforms a constrained problem into a sequence of subproblems such that
their solutions converge to the solution of the original problem. The augmented Lagrangian function

L : Rn × Rm × R→ R is central to this method and is given by

L(x,λ, µ) = f(x) + λ⊺h(x) + µ

2 ||h(x)||22 , (2.69)

where µ is a positive penalty coefficient. The procedure goes like this. First, initial values for µ0 and
λ0 are specified. Then, we approximately minimize locally L(x,λ0, µ0) with respect to x. Next,
the value of λ is updated via a gradient ascent step on the Lagrangian function with learning rate µt,
i.e.

λt+1 ← λt + µth (xt+1) . (2.70)

The penalty coefficient µ is also increased by a multiplicative factor.7 We then go back to minimizing
the Lagrangian function with respect to x given the new updated λ and µ. The same steps are
repeated until convergence. The detailed procedure is given in Algorithm 1.

Algorithm 1 The augmented Lagrangian method.
1: procedure AUGMENTEDLAGRANGIAN(λ0, µ0)
2: t← 0
3: while Not converged do ▷ Insert a stopping criterion
4: xt+1 ← arg minx L(x,λt, µt) ▷ Approximate and local minimization
5: λt+1 ← λt + µth (xt+1)
6: µt+1 ← ηµt ▷ η > 1 and 0 < γ < 1
7: t← t+ 1
8: end while
9: return xt

10: end procedure

7Different schedule also exists. For instance, in Chapter 3 & 4, we update µ only when the constraint violation reduction
from the previous minimization is not sufficient.
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Under specific assumptions, it turns out that if this procedure converges, it is to a stationary
point x∗ of (2.68). The next proposition, adapted from Bertsekas [1999], makes this statement
precise.

Proposition 2.2. ([Bertsekas, 1999, Adapted from Proposition 4.2.2]) For t = 0, 1, ..., let xt satisfy

||∇xL(xt,λt, µt)||2 ≤ ϵt , (2.71)

where {ϵt} and {µt} satisfy

0 < µt < µt+1, ∀t, µt →∞ , (2.72)

0 ≤ ϵt, ∀t, ϵt → 0 . (2.73)

Assume (xt,λt) → (x∗,λ∗) and Dh(x∗) is full rank. Then (x∗,λ∗) satisfies the first order

necessary conditions, i.e.

∇f(x∗)⊤ + λ∗⊺Dh(x∗) = 0 and h(x∗) = 0 . (2.74)

[Bertsekas, 1999, Section 4.2.2] provides additional arguments for why the sequence {µt} is not
required to go to infinity in order to obtain convergence, contrarily to what Proposition 2.2 might
suggest. This is an advantage of the augmented Lagrangian over penalty methods which require
µt →∞, thus inducing ill-conditioning which can slow down the minimization of the subproblems.

2.7. Important gradient estimators
In machine learning, it is frequent that we wish to solve an optimization problem of the form

min
θ

Ez∼Pθ
f(z) , (2.75)

where the expectation does not allow for a simple analytical form (for instance due to f being a
neural network). Stochastic gradient descent (SGD) is often employed to address this issue. The
gradient∇θEz∼Pθ

f(z) can be approximate in different ways of which two are presented next.
Technical note. In what follows, we always assume that the gradient and the integral signs can

be interchanged. Note that, in general, this is not always true and that, to be rigorous, one should
verify for instance that the assumptions of the “dominated convergence theorem” hold [Durrett,
2011].
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2.7.1. REINFORCE (a.k.a. the log derivative trick)

The REINFORCE estimator [Glynn, 1990, Williams, 1992] makes use of a simple trick to
rewrite the gradient as follows:

∇θEz∼Pθ
f(z) =

∫
f(z)∇θp(z;θ)dz (2.76)

=
∫
f(z)∇θp(z;θ)

p(z;θ) p(z;θ)dz (2.77)

=
∫
f(z)∇θ log p(z;θ)p(z;θ)dz (2.78)

= Ez∼Pθ
f(z)∇θ log p(z;θ) , (2.79)

which can be approximated via standard Monte Carlo estimation. This estimator is unbiased but
known to have high variance [Rezende et al., 2014].

2.7.2. The reparameterization trick

The reparameterization trick [Kingma and Welling, 2014, Rezende et al., 2014] uses a different
approach where the random variable z ∼ p(z;θ) is rewritten as z = g(ϵ;θ) with ϵ ∼ p(ϵ) such
that g(ϵ;θ) ∼ p(z;θ). This allows us to rewrite

∇θEz∼Pθ
f(z) = ∇θEϵ∼p(ϵ)f(g(ϵ;θ)) (2.80)

= Eϵ∼p(ϵ)∇θf(g(ϵ;θ)) , (2.81)

which, again, can be approximated via Monte Carlo estimation. This estimator can be applied as
long as such a reparameterization g(ϵ;θ) exists with g differentiable with respect to θ and as long
as f is differentiable (two conditions not required by the REINFORCE estimator). This estimator
works well in practice and requires very few samples to give good performance (due to its low
variance).

The discrete case. What if z is a multinomial random variable? Can it be reparameterized to
estimate∇θEz∼Pθ

f(z)? One can use the following reparameterization

g(ϵ,θ) = one_hot(arg max
i
ϵi + log θi) , (2.82)

where the ϵi’s are mutually independent Gumbel random variables and θi is the probability of
sampling class i (

∑
i θi = 1, θi > 0) [Jang et al., 2017]. The problem with this formulation is

that the gradient with respect to θ is not defined (specifically on ties) which prevents the use of
the reparameterization trick. Next, we present how this reparameterization can be replaced by a
differentiable surrogate.
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2.7.3. The Gumbel-Softmax estimator

If we replace the arg max in (2.82) by the softmax function (which is a differentiable analog),
we obtain

ĝ(ϵ;θ) = softmax(ϵ+ log θ) , (2.83)

which was proposed by Jang et al. [2017] under the name of Gumbel-softmax distribution and
by Maddison et al. [2017] under the name of concrete distribution. We should emphasize that
ĝ(ϵ;θ) does not follow the same distribution as g(ϵ,θ). Hence in general,

∇θEϵ∼Gumbelf(g(ϵ,θ)) ̸= ∇θEϵ∼Gumbelf(ĝ(ϵ,θ)) , (2.84)

But the right-hand side of (2.84) can be approximated using the reparameterization trick, we can
thus use it as a biased approximation.

In Chapter 4, we make use of the Gumbel-Softmax estimator in the context of causal structure
learning, as presented in Ng et al. [2019] (in the context of purely observational data). The idea
is to relax a discrete optimization problem by treating the discrete variables as discrete random

variables and minimizing the expectation of the objective. This application of the Gumbel-Softmax
estimator differs from usual applications in deep learning and we believe it could be applied in
various combinatorial problems. In Appendix B.3 of Chapter 4, we give more details on the specifics
of our implementation. Note that Chapter 5 also makes use of the Gumbel-softmax estimator to
learn a causal graph over latent variables.

40



Prologue to the First Contribution

Article Details
Gradient-Based Neural DAG Learning
by Sébastien Lachapelle, Philippe Brouillard, Tristan Deleu & Simon Lacoste-Julien. This work
was presented at the Eighth International Conference on Learning Representations (ICLR 2020).

Contributions of the Authors
Sébastien Lachapelle did the majority of the redaction, came up with the adaption of the

acyclicity constraint to neural networks, implemented the method in PyTorch and performed most of
the experiments. Philippe Brouillard helped with the overall experiment pipeline and implemented
cross-validation for various baselines written in R. He was also responsible for the generation of
synthetic datasets as well as the "Large sample size experiment". Tristan Deleu integrated the
baselines DAG-GNN and NOTEARS in the experiment pipeline and led the experiments for these
methods. Simon Lacoste-Julien supervised the project and provided guidance on the writing.

Context and Limitations
At the time of writing, the framework of causality had already been proposed as a way to

move past the shortcomings of deep learning methods such as robustness, transferability and
robustness [Pearl, 2019, Peters et al., 2017]. Essentially, the argument was that predictive machine
learning systems are good at learning statistical dependencies present in the training data but
would fail when some dependencies would change at inference time. The claim is that causal
modelling could help to encode which “parts” of the data-generating process are stable across
environments and which are not, thus yielding a more robust system. The idea of learning a causal
graph over latent variables in a generative model was already floating around and was briefly
explored by Bengio et al. [2020] in the bivariate case as a way to integrate causality in deep learning
methods. However, methods for learning causal graphs were based on performing sequences of
conditional independence test [Spirtes et al., 2000], a sequential search in the discrete space of



DAGs [Chickering, 2003, Bühlmann et al., 2014] or on integer linear programming [Jaakkola
et al., 2010, Cussens, 2011] which do not lend themselves naturally to gradient-based optimization
ubiquitous in neural network training. In this context, the work of Zheng et al. [2018], which
formulated the combinatorial problem of learning a DAG into a continuous constrained problem
approachable via gradient-methods, appeared as an obvious candidate to be integrated in modern
deep learning pipelines. However, this approach was limited to linear relationships between
variables, so we proposed GraN-DAG (Chapter 3) as a way to move passed this limitation.

Although Zheng et al. [2018] opened up new possibilities when it comes to optimizing over the
space of DAGs, the optimization problem remains extremely challenging, even in its continuous
constrained form, which remains nonconvex. Identifiability is also a challenge since it requires
strong assumptions on the data-generating process (such as additive noise) that are unlikely to hold
in real-world scenarios (this limitation is addressed in Chapter 4 thanks to interventional data). The
cost of computing the gradient of the acyclicity constraint is cubic in the number of variables which
makes scaling up to more than 100 variables challenging. That being said, Chapter 4 highlights
advantages of continuous constrained methods when it comes to scaling with dataset size, thanks to
stochastic gradient optimization which is also responsible for our ability to train neural networks on
humongous datasets.

The Prologue of Chapter 4 discusses recent works that tackle some of these issues. Furthermore,
we note that other concurrent works have also extended the work of Zheng et al. [2018] to support
nonlinear relationships [Zheng et al., 2020, Ng et al., 2019, Ke et al., 2019].
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Chapter 3

Gradient-Based Neural DAG Learning

Abstract
We propose a novel score-based approach to learning a directed acyclic graph (DAG) from

observational data. We adapt a recently proposed continuous constrained optimization formulation
to allow for nonlinear relationships between variables using neural networks. This extension allows
to model complex interactions while avoiding the combinatorial nature of the problem. In addition to
comparing our method to existing continuous optimization methods, we provide missing empirical
comparisons to nonlinear greedy search methods. On both synthetic and real-world data sets, this
new method outperforms current continuous methods on most tasks, while being competitive with
existing greedy search methods on important metrics for causal inference.

3.1. Introduction
Structure learning and causal inference have many important applications in different areas of

science such as genetics [Koller and Friedman, 2009, Peters et al., 2017], biology [Sachs et al.,
2005] and economics [Pearl, 2009a]. Bayesian networks (BN), which encode conditional indepen-
dencies using directed acyclic graphs (DAG), are powerful models which are both interpretable
and computationally tractable. Causal graphical models (CGM) [Peters et al., 2017] are BNs
which support interventional queries like: What will happen if someone external to the system

intervenes on variable X? Recent work suggests that causality could partially solve challenges faced
by current machine learning systems such as robustness to out-of-distribution samples, adaptability
and explainability [Pearl, 2019, Magliacane et al., 2018]. However, structure and causal learning are
daunting tasks due to both the combinatorial nature of the space of structures (the number of DAGs
grows super exponentially with the number of nodes) and the question of structure identifiability (see
Section 3.2.2). Nevertheless, these graphical models known qualities and promises of improvement
for machine intelligence renders the quest for structure/causal learning appealing.



The typical motivation for learning a causal graphical model is to predict the effect of various
interventions. A CGM can be best estimated when given interventional data, but interventions are
often costly or impossible to obtained. As an alternative, one can use exclusively observational
data and rely on different assumptions which make the graph identifiable from the distribution (see
Section 3.2.2). This is the approach employed in this paper.

We propose a score-based method [Koller and Friedman, 2009] for structure learning named
GraN-DAG which makes use of a recent reformulation of the original combinatorial problem of
finding an optimal DAG into a continuous constrained optimization problem. In the original method
named NOTEARS [Zheng et al., 2018], the directed graph is encoded as a weighted adjacency

matrix which represents coefficients in a linear structural equation model (SEM) [Pearl, 2009a]
(see Section 3.2.3) and enforces acyclicity using a constraint which is both efficiently computable
and easily differentiable, thus allowing the use of numerical solvers. This continuous approach
improved upon popular methods while avoiding the design of greedy algorithms based on heuristics.

Our first contribution is to extend the framework of Zheng et al. [2018] to deal with nonlinear
relationships between variables using neural networks (NN) [Goodfellow et al., 2016]. To adapt
the acyclicity constraint to our nonlinear model, we use an argument similar to what is used in
Zheng et al. [2018] and apply it first at the level of neural network paths and then at the level of
graph paths. Although GraN-DAG is general enough to deal with a large variety of parametric fam-
ilies of conditional probability distributions, our experiments focus on the special case of nonlinear
Gaussian additive noise models since, under specific assumptions, it provides appealing theoretical
guarantees easing the comparison to other graph search procedures (see Section 3.2.2 & 3.3.3).
On both synthetic and real-world tasks, we show GraN-DAG often outperforms other approaches
which leverage the continuous paradigm, including DAG-GNN [Yu et al., 2019b], a recent nonlinear
extension of Zheng et al. [2018] which uses an evidence lower bound as score.

Our second contribution is to provide a missing empirical comparison to existing methods
that support nonlinear relationships but tackle the optimization problem in its discrete form using
greedy search procedures, namely CAM [Bühlmann et al., 2014] and GSF [Huang et al., 2018a].
We show that GraN-DAG is competitive on the wide range of tasks we considered, while using
pre- and post-processing steps similar to CAM.

We provide an implementation of GraN-DAG here.

3.2. Background
Before presenting GraN-DAG, we review concepts relevant to structure and causal learning.
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3.2.1. Causal graphical models

We suppose the natural phenomenon of interest can be described by a random vector x ∈ Rd

entailed by an underlying CGM (Px,G) where Px is a probability distribution over x and G = (V,E)
is a DAG [Peters et al., 2017]. Each node j ∈ V corresponds to exactly one variable in the system.
Let πG

j denote the set of parents of node j in G and let xπG
j

denote the random vector containing
the variables corresponding to the parents of j in G. Throughout the paper, we assume there are
no hidden variables. In a CGM, the distribution Px is said to be Markov to G, i.e. we can write
the probability density function (pdf) of Px as p(x) =

∏d
j=1 pj(xj|xπG

j
) where pj(xj|xπG

j
) is the

conditional pdf of variable xj given xπG
j

. A CGM can be thought of as a BN in which directed edges
are given a causal meaning, allowing it to answer queries regarding interventional distributions

[Koller and Friedman, 2009].

3.2.2. Structure identifiability

In general, it is impossible to recover G given only samples from Px, i.e. without interventional

data. It is, however, customary to rely on a set of assumptions to render the structure fully or
partially identifiable.

Definition 3.1. Given a set of assumptions A on a CGMM = (Px,G), its graph G is said to be

identifiable from Px if there exists no other CGM M̃ = (P̃x, G̃) satisfying all assumptions in A such

that G̃ ≠ G and P̃x = Px.

There are many examples of graph identifiability results for continuous variables [Peters et al.,
2014, Peters and Bühlman, 2014, Shimizu et al., 2006, Zhang and Hyvärinen, 2009] as well as for
discrete variables [Peters et al., 2011]. These results are obtained by assuming that the conditional
densities belong to a specific parametric family. For example, if one assumes that the distribution
Px is entailed by a structural equation model of the form

xj := fj(xπG
j
) + nj with nj ∼ N (0, σ2

j ) ∀j ∈ V (3.1)

where fj is a nonlinear function satisfying some mild regularity conditions and the noises nj are
mutually independent, then G is identifiable from Px (see Peters et al. [2014] for the complete
theorem and its proof). This is a particular instance of additive noise models (ANM). We will make
use of this result in our experiments in Section 3.4.

One can consider weaker assumptions such as faithfulness [Peters et al., 2017]. This assumption
allows one to identify, not G itself, but the Markov equivalence class to which it belongs [Spirtes
et al., 2000]. A Markov equivalence class is a set of DAGs which encode exactly the same set
of conditional independence statements and can be characterized by a graphical object named a
completed partially directed acyclic graph (CPDAG) [Koller and Friedman, 2009, Peters et al.,
2017]. Some algorithms we use as baselines in Section 3.4 output only a CPDAG.
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3.2.3. NOTEARS: Continuous optimization for structure learning

Structure learning is the problem of learning G using a data set of n samples {x(1), ...,x(n)}
from Px. Score-based approaches cast this problem as an optimization problem, i.e.
Ĝ = arg maxG∈DAG S(G) where S(G) is a regularized maximum likelihood under graph G.
Since the number of DAGs is super exponential in the number of nodes, most methods rely on
various heuristic greedy search procedures to approximately solve the problem (see Section 3.5 for a
review). We now present the work of Zheng et al. [2018] which proposes to cast this combinatorial
optimization problem into a continuous constrained one.

To do so, the authors propose to encode the graph G on d nodes as a weighted adjacency
matrix U ∈ Rd×d which represents (possibly negative) coefficients in a linear SEM of the form
xj := u⊤

j x + ni ∀j where uj is the jth column of U and nj is a noise variable. Let GU be the
directed graph associated with the SEM and let AU be the (binary) adjacency matrix associated
with GU . One can see that the following equivalence holds:

(AU )ij = 0 ⇐⇒ Uij = 0 (3.2)

To make sure GU is acyclic, the authors propose the following constraint on U :

Tr eU⊙U − d = 0 (3.3)

where eM ≜
∑∞

k=0
Mk

k! is the matrix exponential and ⊙ is the Hadamard product.
To see why this constraint characterizes acyclicity, first note that (AU

k)jj is the number of
cycles of length k passing through node j in graph GU . Clearly, for GU to be acyclic, we must
have TrAU

k = 0 for k = 1, 2, ...,∞. By equivalence (3.2), this is true when Tr(U ⊙U)k = 0 for
k = 1, 2, ...,∞ . From there, one can simply apply the definition of the matrix exponential to see
why constraint (3.3) characterizes acyclicity (see Zheng et al. [2018] for the full development).

The authors propose to use a regularized negative least square score (maximum likelihood for a
Gaussian noise model). The resulting continuous constrained problem is

max
U
S(U ,X) ≜ − 1

2n∥X −XU∥
2
F − λ∥U∥1 s.t. Tr eU⊙U − d = 0 (3.4)

where X ∈ Rn×d is the design matrix containing all n samples. The nature of the problem has
been drastically changed: we went from a combinatorial to a continuous problem. The difficulties
of combinatorial optimization have been replaced by those of non-convex optimization, since the
feasible set is non-convex. Nevertheless, a standard numerical solver for constrained optimization
such has an augmented Lagrangian method [Bertsekas, 1999] can be applied to get an approximate
solution, hence there is no need to design a greedy search procedure. Moreover, this approach is
more global than greedy methods in the sense that the whole matrix U is updated at each iteration.
Continuous approaches to combinatorial optimization have sometimes demonstrated improved

46



performance over discrete approaches in the literature (see for example Alayrac et al. [2018, §5.2]
where they solve the multiple sequence alignment problem with a continuous optimization method).

3.3. GraN-DAG: Gradient-based neural DAG learning
We propose a new nonlinear extension to the framework presented in Section 3.2.3. For

each variable xj , we learn a fully connected neural network with L hidden layers parametrized by
ϕ(j) := {W (1)

(j) , . . . ,W
(L+1)
(j) } whereW (ℓ)

(j) is the ℓth weight matrix of the jth NN (biases are omitted
for clarity). Each NN takes as input x−j ∈ Rd, i.e. the vector x with the jth component masked to
zero, and outputs θ(j) ∈ Rm, the m-dimensional parameter vector of the desired distribution family
for variable xj .1 The fully connected NNs have the following form

θ(j) ≜W
(L+1)
(j) g(. . . g(W (2)

(j) g(W (1)
(j) x−j)) . . . ) ∀j (3.5)

where g is a nonlinearity applied element-wise. Note that the evaluation of all NNs can
be parallelized on GPU. Distribution families need not be the same for each variable. Let
ϕ ≜ {ϕ(1), . . . ,ϕ(d)} represents all parameters of all d NNs. Without any constraint on its
parameter ϕ(j), neural network j models the conditional pdf pj(xj|x−j;ϕ(j)). Note that the product∏d

j=1 pj(xj|x−j;ϕ(j)) does not integrate to one (i.e. it is not a joint pdf), since it does not decom-
pose according to a DAG. We now show how one can constrain ϕ to make sure the product of all
conditionals outputted by the NNs is a joint pdf. The idea is to define a new weighted adjacency
matrix Aϕ similar to the one encountered in Section 3.2.3, which can be directly used inside the
constraint of Equation 3.3 to enforce acyclicity.

3.3.1. Neural network connectivity

Before defining the weighted adjacency matrix Aϕ, we need to focus on how one can make
some NN outputs unaffected by some inputs. Since we will discuss properties of a single NN, we
drop the NN subscript (j) to improve readability.

We will use the term neural network path to refer to a computation path in a NN. For example,
in a NN with two hidden layers, the sequence of weights (W (1)

h1i ,W
(2)
h2h1

,W
(3)
kh2

) is a NN path from
input i to output k. We say that a NN path is inactive if at least one weight along the path is zero.
We can loosely interpret the path product |W (1)

h1i ||W
(2)
h2h1
||W (3)

kh2
| ≥ 0 as the strength of the NN path,

where a path product is equal to zero if and only if the path is inactive. Note that if all NN paths
from input i to output k are inactive (i.e. the sum of their path products is zero), then output k does
not depend on input i anymore since the information in input i will never reach output k. The sum
of all path products from input i to output k for all input i and output k can be easily computed by

1Not all parameter vectors need to have the same dimensionality, but to simplify the notation, we suppose mj = m ∀j
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taking the following matrix product.

C ≜ |W (L+1)| . . . |W (2)||W (1)| ∈ Rm×d
≥0 (3.6)

where |W | is the element-wise absolute value ofW . Let us nameC the neural network connectivity

matrix. It can be verified that Cki is the sum of all NN path products from input i to output k. This
means it is sufficient to have Cki = 0 to render output k independent of input i.

Remember that each NN in our model outputs a parameter vector θ for a conditional distribution
and that we want the product of all conditionals to be a valid joint pdf, i.e. we want its corresponding
directed graph to be acyclic. With this in mind, we see that it could be useful to make a certain
parameter θ not dependent on certain inputs of the NN. To have θ independent of variable xi, it is
sufficient to have

∑m
k=1Cki = 0.

3.3.2. A weighted adjacency matrix

We now define a weighted adjacency matrixAϕ that can be used in constraint of Equation 3.3.

(Aϕ)ij :=


∑m

k=1
(
C(j)

)
ki
, if j ̸= i

0, otherwise
(3.7)

where C(j) denotes the connectivity matrix of the NN associated with variable xj .
As the notation suggests, Aϕ ∈ Rd×d

≥0 depends on all weights of all NNs. Moreover, it can effec-
tively be interpreted as a weighted adjacency matrix similarly to what we presented in Section 3.2.3,
since we have that

(Aϕ)ij = 0 =⇒ θ(j) does not depend on variable xi (3.8)

We note Gϕ to be the directed graph entailed by parameter ϕ. We can now write our adapted
acyclicity constraint:

h(ϕ) ≜ Tr eAϕ − d = 0 (3.9)

Note that we can compute the gradient of h(ϕ) w.r.t. ϕ (except at points of non-differentiability
arising from the absolute value function, similar to standard neural networks with ReLU acti-
vations [Glorot et al., 2011]; these points did not appear problematic in our experiments using
SGD).

3.3.3. A differentiable score and its optimization

We propose solving the maximum likelihood optimization problem

max
ϕ

Ex∼Px

d∑
j=1

log pj(xj|xπϕ
j
;ϕ(j)) s.t. Tr eAϕ − d = 0 (3.10)
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where πϕj denotes the set of parents of node j in graph Gϕ. Note that
∑d

j=1 log pj(xj|xπϕ
j
;ϕ(j)) is a

valid log-likelihood function when constraint (3.9) is satisfied.
As suggested in Zheng et al. [2018], we apply an augmented Lagrangian approach to get an

approximate solution to program (3.10). Augmented Lagrangian methods consist of optimizing a
sequence of subproblems for which the exact solutions are known to converge to a stationary point
of the constrained problem under some regularity conditions [Bertsekas, 1999]. In our case, each
subproblem is

max
ϕ
L(ϕ, λt, µt) ≜ Ex∼Px

d∑
j=1

log pj(xj|xπϕ
j
;ϕ(j))− λth(ϕ)− µt

2 h(ϕ)2 (3.11)

where λt and µt are the Lagrangian and penalty coefficients of the tth subproblem, respectively.
These coefficients are updated after each subproblem is solved. Since GraN-DAG rests on neural
networks, we propose to approximately solve each subproblem using a well-known stochastic
gradient algorithm popular for NN in part for its implicit regularizing effect [Poggio et al., 2018].
See Appendix A for details regarding the optimization procedure.

In the current section, we presented GraN-DAG in a general manner without specifying explicitly
which distribution family is parameterized by θ(j). In principle, any distribution family could be
employed as long as its log-likelihood can be computed and differentiated with respect to its
parameter θ. However, it is not always clear whether the exact solution of problem (3.10) recovers
the ground truth graph G. It will depend on both the modelling choice of GraN-DAG and the
underlying CGM (Px,G).
Proposition 3.1. Let ϕ∗ and Gϕ∗ be the optimal solution to (3.10) and its corresponding graph,

respectively. LetM(A) be the set of CGM (P′,G ′) for which the assumptions in A are satisfied

and let C be the set of CGM (P′,G ′) which can be represented by the model (e.g. NN outputting a

Gaussian distribution). If the underlying CGM (Px,G) ∈ C and C = M(A) for a specific set of

assumptions A such that G is identifiable from Px, then Gϕ∗ = G.

Proof: Let Pϕ be the joint distribution entailed by parameter ϕ. Note that the population
log-likelihood Ex∼Px log pϕ(x) is maximal iff Pϕ = Px. We know this maximum can be achieved
by a specific parameter ϕ∗ since by hypothesis (Px,G) ∈ C. Since G is identifiable from Px, we
know there exists no other CGM (P̃x, G̃) ∈ C such that G̃ ≠ G and P̃x = Px. Hence Gϕ∗ has to be
equal to G.■

In Section 3.4.1, we empirically explore the identifiable setting of nonlinear Gaussian ANMs
introduced in Section 3.2.2. In practice, one should keep in mind that solving (3.10) exactly is hard
since the problem is non-convex (the augmented Lagrangian converges only to a stationary point)
and moreover we only have access to the empirical log-likelihood (Proposition 3.1 holds for the
population case).
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3.3.4. Thresholding

The solution outputted by the augmented Lagrangian will satisfy the constraint only up to
numerical precision, thus several entries ofAϕ might not be exactly zero and require thresholding.
To do so, we mask the inputs of each NN j using a binary matrix M(j) ∈ {0, 1}d×d initialized to
have (M(j))ii = 1 ∀i ̸= j and zeros everywhere else. Having (M(j))ii = 0 means the input i
of NN j has been thresholded. This mask is integrated in the product of Equation 3.6 by doing
C(j) ≜ |W (L+1)

(j) | . . . |W (1)
(j) |M(j) without changing the interpretation of C(j) (M(j) can be seen

simply as an extra layer in the NN). During optimization, if the entry (Aϕ)ij is smaller than the
threshold ϵ = 10−4, the corresponding mask entry (M(j))ii is set to zero, permanently. The masks
M(j) are never updated via gradient descent. We also add an iterative thresholding step at the end to
ensure the estimated graph Gϕ is acyclic (described in Appendix B).

3.3.5. Overfitting

In practice, we maximize an empirical estimate of the objective of problem (3.10). It is well
known that this maximum likelihood score is prone to overfitting in the sense that adding edges
can never reduce the maximal likelihood [Koller and Friedman, 2009]. GraN-DAG gets around
this issue in four ways. First, as we optimize a subproblem, we evaluate its objective on a held-out
data set and declare convergence once it has stopped improving. This approach is known as early

stopping [Prechelt, 1997]. Second, to optimize (3.11), we use a stochastic gradient algorithm variant
which is now known to have an implicit regularizing effect [Poggio et al., 2018]. Third, once we
have thresholded our graph estimate to be a DAG, we apply a final pruning step identical to what is
done in CAM [Bühlmann et al., 2014] to remove spurious edges. This step performs a regression of
each node against its parents and uses a significance test to decide which parents should be kept
or not. Fourth, for graphs of 50 nodes or more, we apply a preliminary neighbors selection (PNS)
before running the optimization procedure as was also recommended in Bühlmann et al. [2014].
This procedure selects a set of potential parents for each variables. See Appendix C for details on
PNS and pruning. Many score-based approaches control overfitting by penalizing the number of
edges in their score. For example, NOTEARS includes the L1 norm of its weighted adjacency matrix
U in its objective. GraN-DAG regularizes using PNS and pruning for ease of comparision to CAM,
the most competitive approach in our experiments. The importance of PNS and pruning and their
ability to reduce overfitting is illustrated in an ablation study presented in Appendix C. The study
shows that PNS and pruning are both very important for the performance of GraN-DAG in terms of
SHD, but do not have a significant effect in terms of SID. In these experiments, we also present
NOTEARS and DAG-GNN with PNS and pruning, without noting a significant improvement.
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3.3.6. Computational Complexity

To learn a graph, GraN-DAG relies on the proper training of neural networks on which it is
built. We thus propose using a stochastic gradient method which is a standard choice when it comes
to NN training because it scales well with both the sample size and the number of parameters
and it implicitly regularizes learning. Similarly to NOTEARS, GraN-DAG requires the evaluation
of the matrix exponential of Aϕ at each iteration costing O(d3). NOTEARS justifies the use
of a batch proximal quasi-Newton algorithm by the low number of O(d3) iterations required to
converge. Since GraN-DAG uses a stochastic gradient method, one would expect it will require more
iterations to converge. However, in practice we observe that GraN-DAG performs fewer iterations
than NOTEARS before the augmented Lagrangian converges (see Table 3.4 of Appendix A). We
hypothesize this is due to early stopping which avoids having to wait until the full convergence
of the subproblems hence limiting the total number of iterations. Moreover, for the graph sizes
considered in this paper (d ≤ 100), the evaluation of h(ϕ) in GraN-DAG, which includes the matrix
exponentiation, does not dominate the cost of each iteration (≈ 4% for 20 nodes and ≈ 13% for 100
nodes graphs). Evaluating the approximate gradient of the log-likelihood (costing O(d2) assuming
a fixed minibatch size, NN depth and width) appears to be of greater importance for d ≤ 100.

3.4. Experiments
In this section, we compare GraN-DAG to various baselines in the continuous paradigm, namely

DAG-GNN [Yu et al., 2019b] and NOTEARS [Zheng et al., 2018], and also in the combinatorial
paradigm, namely CAM [Bühlmann et al., 2014], GSF [Huang et al., 2018a], GES [Chickering,
2003] and PC [Spirtes et al., 2000]. These methods are discussed in Section 3.5. In all experiments,
each NN learned by GraN-DAG outputs the mean of a Gaussian distribution µ̂(j), i.e. θ(j) := µ̂(j)

and xj|xπG
j
∼ N (µ̂(j), σ̂

2
(j)) ∀j. The parameters σ̂2

(j) are learned as well, but do not depend on
the parent variables xπG

j
(unless otherwise stated). Note that this modelling choice matches the

nonlinear Gaussian ANM introduced in Section 3.2.2.
We report the performance of random graphs sampled using the Erdős-Rényi (ER) scheme

described in Appendix E (denoted by RANDOM). For each approach, we evaluate the estimated
graph on two metrics: the structural hamming distance (SHD) and the structural interventional

distance (SID) [Peters and Bühlmann, 2015]. The former simply counts the number of missing,
falsely detected or reversed edges. The latter is especially well suited for causal inference since
it counts the number of couples (i, j) such that the interventional distribution p(xj|do(xi = x̄))
would be miscalculated if we were to use the estimated graph to form the parent adjustement set.
Note that GSF, GES and PC output only a CPDAG, hence the need to report a lower and an upper
bound on the SID. See Appendix G for more details on SHD and SID. All experiments were ran
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with publicly available code from the authors website. See Appendix H for the details of their
hyperparameters. In Appendix I, we explain how one could use a held-out data set to select the
hyperparameters of score-based approaches and report the results of such a procedure on almost
every settings discussed in the present section.

3.4.1. Synthetic data

We have generated different data set types which vary along four dimensions: data generating
process, number of nodes, level of edge sparsity and graph type. We consider two graph sampling
schemes: Erdős-Rényi (ER) and scale-free (SF) (see Appendix E for details). For each data set type,
we sampled 10 data sets of 1000 examples as follows: First, a ground truth DAG G is randomly
sampled following either the ER or the SF scheme. Then, the data is generated according to a
specific sampling scheme.

The first data generating process we consider is the nonlinear Gaussian ANM (Gauss-ANM)
introduced in Section 3.2.2 in which data is sampled following xj := fj(xπG

j
) + nj with mutually

independent noises nj ∼ N (0, σ2
j ) ∀j where the functions fj are independently sampled from a

Gaussian process with a unit bandwidth RBF kernel and with σ2
j sampled uniformly. As mentioned

in Section 3.2.2, we know G to be identifiable from the distribution. Proposition 3.1 indicates that
the modelling choice of GraN-DAG together with this synthetic data ensure that solving (3.10) to
optimality would recover the correct graph. Note that NOTEARS and CAM also make the correct
Gaussian noise assumption, but do not have enough capacity to represent the fj functions properly.

We considered graphs of 10, 20, 50 and 100 nodes. Tables 3.1 & 3.2 present results only for 10
and 50 nodes since the conclusions do not change with graphs of 20 or 100 nodes (see Appendix F
for these additional experiments). We consider graphs of d and 4d edges (respectively denoted by
ER1 and ER4 in the case of ER graphs). We report the performance of the popular GES and PC in
Appendix F since they are almost never on par with the best methods presented in this section.

ER1 ER4 SF1 SF4

SHD SID SHD SID SHD SID SHD SID

GraN-DAG 1.7±2.5 1.7±3.1 8.3±2.8 21.8±8.9 1.2±1.1 4.1±6.1 9.9±4.0 16.4±6.0
DAG-GNN 11.4±3.1 37.6±14.4 35.1±1.5 81.9±4.7 9.9±1.1 29.7±15.8 20.8±1.9 48.4±15.6
NOTEARS 12.2±2.9 36.6±13.1 32.6±3.2 79.0±4.1 10.7±2.2 32.0±15.3 20.8±2.7 49.8±15.6
CAM 1.1±1.1 1.1±2.4 12.2±2.7 30.9±13.2 1.4±1.6 5.4±6.1 9.8±4.3 19.3±7.5
GSF 6.5±2.6 [6.2±10.8 21.7±8.4 [37.2±19.2 1.8±1.7 [2.0±5.1 8.5±4.2 [13.2±6.8

17.7±12.3] 62.7±14.9] 6.9±6.2] 20.6±12.1]
RANDOM 26.3±9.8 25.8±10.4 31.8±5.0 76.6±7.0 25.1±10.2 24.5±10.5 28.5±4.0 47.2±12.2

Table 3.1. Results for ER and SF graphs of 10 nodes with Gauss-ANM data
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ER1 ER4 SF1 SF4

SHD SID SHD SID SHD SID SHD SID

GraN-DAG 5.1±2.8 22.4±17.8 102.6±21.2 1060.1±109.4 25.5±6.2 90.0±18.9 111.3±12.3 271.2±65.4
DAG-GNN 49.2±7.9 304.4±105.1 191.9±15.2 2146.2±64 49.8±1.3 182.8±42.9 144.9±13.3 540.8±151.1
NOTEARS 62.8±9.2 327.3±119.9 202.3±14.3 2149.1±76.3 57.7±3.5 195.7±54.9 153.7±11.8 558.4±153.5
CAM 4.3±1.9 22.0±17.9 98.8±20.7 1197.2±125.9 24.1±6.2 85.7±31.9 111.2±13.3 320.7±152.6
GSF 25.6±5.1 [21.1±23.1 81.8±18.8 [906.6±214.7 31.6±6.7 [85.8±29.9 120.2±10.9 [284.7±80.2

79.2±33.5] 1030.2±172.6] 147.3±49.9] 379.9±98.3]
RANDOM 535.7±401.2 272.3±125.5 708.4±234.4 1921.3±203.5 514.0±360.0 381.3±190.3 660.6±194.9 1198.9±304.6

Table 3.2. Results for ER and SF graphs of 50 nodes with Gauss-ANM data

We now examine Tables 3.1 & 3.2 (the errors bars represent the standard deviation across
datasets per task). We can see that, across all settings, GraN-DAG and CAM are the best performing
methods, both in terms of SHD and SID, while GSF is not too far behind. The poor performance
of NOTEARS can be explained by its inability to model nonlinear functions. In terms of SHD,
DAG-GNN performs rarely better than NOTEARS while in terms of SID, it performs similarly
to RANDOM in almost all cases except in scale-free networks of 50 nodes or more. Its poor
performance might be due to its incorrect modelling assumptions and because its architecture uses a
strong form of parameter sharing between the fj functions, which is not justified in a setup like ours.
GSF performs always better than DAG-GNN and NOTEARS but performs as good as CAM and
GraN-DAG only about half the time. Among the continuous approaches considered, GraN-DAG is
the best performing on these synthetic tasks.

Even though CAM (wrongly) assumes that the functions fj are additive, i.e.
fj(xπG

j
) =

∑
i∈πG

j
fij(xj) ∀j, it manages to compete with GraN-DAG which does not make this

incorrect modelling assumption2. This might partly be explained by a bias-variance trade-off. CAM
is biased but has a lower variance than GraN-DAG due to its restricted capacity, resulting in both
methods performing similarly. In Appendix D, we present an experiment showing that GraN-DAG
can outperform CAM in higher sample size settings, suggesting this explanation is reasonable.

Having confirmed that GraN-DAG is competitive on the ideal Gauss-ANM data, we experi-
mented with settings better adjusted to other models to see whether GraN-DAG remains competitive.
We considered linear Gaussian data (better adjusted to NOTEARS) and nonlinear Gaussian data
with additive functions (better adjusted to CAM) named LIN and ADD-FUNC, respectively. See
Appendix E for the details of their generation. We report the results of GraN-DAG and other
baselines in Table 3.12 & 3.13 of the appendix. On linear Gaussian data, most methods score poorly
in terms of SID which is probably due to the unidentifiability of the linear Gaussian model (when
the noise variances are unequal). GraN-DAG and CAM perform similarly to NOTEARS in terms of
SHD. On ADD-FUNC, CAM dominates all methods on most graph types considered (GraN-DAG
is on par only for the 10 nodes ER1 graph). However, GraN-DAG outperforms all other methods

2Although it is true that GraN-DAG does not wrongly assume that the functions fj are additive, it is not clear whether
its neural networks can exactly represent functions sampled from the Gaussian process.
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which can be explained by the fact that the conditions of Proposition 3.1 are satisfied (supposing the
functions

∑
i∈πG

j
fij(xi) can be represented by the NNs).

We also considered synthetic data sets which do not satisfy the additive Gaussian noise assump-
tion present in GraN-DAG, NOTEARS and CAM. We considered two kinds of post nonlinear

causal models [Zhang and Hyvärinen, 2009], PNL-GP and PNL-MULT (see Appendix E for details
about their generation). A post nonlinear model has the form xj := gj(fj(xπG

j
) + nj) where nj is a

noise variable. Note that GraN-DAG (with the current modelling choice) and CAM do not have the
representational power to express these conditional distributions, hence violating an assumption of
Proposition 3.1. However, these data sets differ from the previous additive noise setup only by the
nonlinearity gj , hence offering a case of mild model misspecification. The results are reported in
Table 3.14 of the appendix. GraN-DAG and CAM are outperforming DAG-GNN and NOTEARS
except in SID for certain data sets where all methods score similarly to RANDOM. GraN-DAG and
CAM have similar performance on all data sets except one where CAM is better. GSF performs
worst than GraN-DAG (in both SHD and SID) on PNL-GP but not on PNL-MULT where it performs
better in SID.

3.4.2. Real and pseudo-real data

We have tested all methods considered so far on a well known data set which measures the
expression level of different proteins and phospholipids in human cells [Sachs et al., 2005]. We
trained only on the n = 853 observational samples. This dataset and its ground truth graph proposed
in Sachs et al. [2005] (11 nodes and 17 edges) are often used in the probabilistic graphical model
literature [Koller and Friedman, 2009]. We also consider pseudo-real data sets sampled from the
SynTReN generator [Van den Bulcke, 2006]. This generator was designed to create synthetic
transcriptional regulatory networks and produces simulated gene expression data that approximates
experimental data. See Appendix E for details of the generation.

In applications, it is not clear whether the conditions of Proposition 3.1 hold since we do not
know whether (Px,G) ∈ C. This departure from identifiable settings is an occasion to explore a
different modelling choice for GraN-DAG. In addition to the model presented at the beginning of this
section, we consider an alternative, denoted GraN-DAG++, which allows the variance parameters
σ̂2

(i) to depend on the parent variables xπG
i

through the NN, i.e. θ(i) := (µ̂(i), log σ̂2
(i)). Note that

this is violating the additive noise assumption (in ANMs, the noise is independent of the parent
variables).

In addition to metrics used in Section 3.4.1, we also report SHD-C. To compute the SHD-C
between two DAGs, we first map each of them to their corresponding CPDAG and measure the
SHD between the two. This metric is useful to compare algorithms which only outputs a CPDAG
like GSF, GES and PC to other methods which outputs a DAG. Results are reported in Table 3.3.
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Protein signaling data set SynTReN (20 nodes)
SHD SHD-C SID SHD SHD-C SID

GraN-DAG 13 11 47 34.0±8.5 36.4±8.3 161.7±53.4
GraN-DAG++ 13 10 48 33.7±3.7 39.4±4.9 127.5±52.8
DAG-GNN 16 21 44 93.6±9.2 97.6±10.3 157.5±74.6
NOTEARS 21 21 44 151.8±28.2 156.1±28.7 110.7±66.7
CAM 12 9 55 40.5±6.8 41.4±7.1 152.3±48
GSF 18 10 [44, 61] 61.8±9.6 63.3±11.4 [76.7±51.1, 109.9±39.9]
GES 26 28 [34, 45] 82.6±9.3 85.6±10 [157.2±48.3, 168.8±47.8]
PC 17 11 [47, 62] 41.2±5.1 42.4±4.6 [154.8±47.6, 179.3±55.6]
RANDOM 21 20 60 84.7±53.8 86.7±55.8 175.8±64.7

Table 3.3. Results on real and pseudo-real data

First, all methods perform worse than what was reported for graphs of similar size in Sec-
tion 3.4.1, both in terms of SID and SHD. This might be due to the lack of identifiability guarantees
we face in applications. On the protein data set, GraN-DAG outperforms CAM in terms of SID
(which differs from the general trend of Section 3.4.1) and arrive almost on par in terms of SHD
and SHD-C. On this data set, DAG-GNN has a reasonable performance, beating GraN-DAG in
SID, but not in SHD. On SynTReN, GraN-DAG obtains the best SHD but not the best SID. Overall,
GraN-DAG is always competitive with the best methods of each task.

3.5. Related Work
Most methods for structure learning from observational data make use of some identifiability

results similar to the ones raised in Section 3.2.2. Roughly speaking, there are two classes of
methods: independence-based and score-based methods. GraN-DAG falls into the second class.

Score-based methods [Koller and Friedman, 2009, Peters et al., 2017] cast the problem of
structure learning as an optimization problem over the space of structures (DAGs or CPDAGs).
Many popular algorithms tackle the combinatorial nature of the problem by performing a form of
greedy search. GES [Chickering, 2003] is a popular example. It usually assumes a linear parametric
model with Gaussian noise and greedily search the space of CPDAGs in order to optimize the
Bayesian information criterion. GSF [Huang et al., 2018a], is based on the same search algorithm as
GES, but uses a generalized score function which can model nonlinear relationships. Other greedy
approaches rely on parametric assumptions which render G fully identifiable. For example, Peters
and Bühlman [2014] relies on a linear Gaussian model with equal variances to render the DAG
identifiable. RESIT [Peters et al., 2014], assumes nonlinear relationships with additive Gaussian
noise and greedily maximizes an independence-based score. However, RESIT does not scale
well to graph of more than 20 nodes. CAM [Bühlmann et al., 2014] decouples the search for the
optimal node ordering from the parents selection for each node and assumes an additive noise
model (ANM) [Peters et al., 2017] in which the nonlinear functions are additive. As mentioned
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in Section 3.2.3, NOTEARS, proposed in Zheng et al. [2018], tackles the problem of finding
an optimal DAG as a continuous constrained optimization program. This is a drastic departure
from previous combinatorial approaches which enables the application of well studied numerical
solvers for continuous optimizations. Recently, Yu et al. [2019b] proposed DAG-GNN, a graph
neural network architecture (GNN) which can be used to learn DAGs via the maximization of an
evidence lower bound. By design, a GNN makes use of parameter sharing which we hypothesize
is not well suited for most DAG learning tasks. To the best of our knowledge, DAG-GNN is
the first approach extending the NOTEARS algorithm for structure learning to support nonlinear
relationships. Although Yu et al. [2019b] provides empirical comparisons to linear approaches,
namely NOTEARS and FGS (a faster extension of GES) [Ramsey et al., 2017], comparisons to
greedy approaches supporting nonlinear relationships such as CAM and GSF are missing. Moreover,
GraN-DAG significantly outperforms DAG-GNN on our benchmarks. There exists certain score-
based approaches which uses integer linear programming (ILP) [Jaakkola et al., 2010, Cussens,
2011] which internally solve continuous linear relaxations. Connections between such methods and
the continuous constrained approaches are yet to be explored.

When used with the additive Gaussian noise assumption, the theoretical guarantee of GraN-DAG
rests on the identifiability of nonlinear Gaussian ANMs. Analogously to CAM and NOTEARS,
this guarantee holds only if the correct identifiability assumptions hold in the data and if the score
maximization problem is solved exactly (which is not the case in all three algorithms). DAG-
GNN provides no theoretical justification for its approach. NOTEARS and CAM are designed to
handle what is sometimes called the high-dimensional setting in which the number of samples is
significantly smaller than the number of nodes. Bühlmann et al. [2014] provides consistency results
for CAM in this setting. GraN-DAG and DAG-GNN were not designed with this setting in mind
and would most likely fail if confronted to it. Solutions for fitting a neural network on less data
points than input dimensions are not common in the NN literature.

Methods for causal discovery using NNs have already been proposed. SAM [Kalainathan et al.,
2018] learns conditional NN generators using adversarial losses but does not enforce acyclicity.
CGNN [Goudet et al., 2018], when used for multivariate data, requires an initial skeleton to learn
the different functional relationships.

GraN-DAG has strong connections with MADE [Germain et al., 2015], a method used to
learn distributions using a masked NN which enforces the so-called autoregressive property. The
autoregressive property and acyclicity are in fact equivalent. MADE does not learn the weight
masking, it fixes it at the beginning of the procedure. GraN-DAG could be used with a unique NN
taking as input all variables and outputting parameters for all conditional distributions. In this case,
it would be similar to MADE, except the variable ordering would be learned from data instead of
fixed a priori.
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3.6. Conclusion
The continuous constrained approach to structure learning has the advantage of being more

global than other approximate greedy methods (since it updates all edges at each step based on
the gradient of the score but also the acyclicity constraint) and allows to replace task-specific
greedy algorithms by appropriate off-the-shelf numerical solvers. In this work, we have introduced
GraN-DAG, a novel score-based approach for structure learning supporting nonlinear relationships
while leveraging a continuous optimization paradigm. The method rests on a novel characterization
of acyclicity for NNs based on the work of Zheng et al. [2018]. We showed GraN-DAG outperforms
other gradient-based approaches, namely NOTEARS and its recent nonlinear extension DAG-GNN,
on the synthetic data sets considered in Section 3.4.1 while being competitive on real and pseudo-
real data sets of Section 3.4.2. Compared to greedy approaches, GraN-DAG is competitive across
all datasets considered. To the best of our knowledge, GraN-DAG is the first approach leveraging
the continuous paradigm introduced in Zheng et al. [2018] which has been shown to be competitive
with state of the art methods supporting nonlinear relationships.
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Appendices of Chapter 3

A. Optimization
Let us recall the augmented Lagrangian:

max
ϕ
L(ϕ, λt, µt) ≜ Ex∼Px

d∑
i=1

log pi(xi|xπϕ
i
;ϕ(i))− λth(ϕ)− µt

2 h(ϕ)2 (3.12)

where λt and µt are the Lagrangian and penalty coefficients of the tth subproblem, respectively. In
all our experiments, we initialize those coefficients using λ0 = 0 and µ0 = 10−3. We approximately
solve each non-convex subproblem using RMSprop [Tieleman and Hinton, 2012], a stochastic
gradient descent variant popular for NNs. We use the following gradient estimate:

∇ϕL(ϕ, λt, µt) ≈ ∇ϕL̂B(ϕ, λt, µt)

with L̂B(ϕ, λt, µt) ≜
1
|B|

∑
x∈B

d∑
i=1

log pi(xi|xπϕ
i
;ϕ(i))− λth(ϕ)− µt

2 h(ϕ)2
(3.13)

where B is a minibatch sampled from the data set and |B| is the minibatch size. The gradient
estimate ∇ϕL̂B(ϕ, λt, µt) can be computed using standard deep learning libraries. We consider a
subproblem has converged when L̂H(ϕ, λt, µt) evaluated on a held-out data set H stops increasing.
Let ϕ∗

t be the approximate solution to subproblem t. Then, λt and µt are updated according to the
following rule:

λt+1 ← λt + µth (ϕ∗
t )

µt+1 ←

{
ηµt, if h (ϕ∗

t ) > γh
(
ϕ∗

t−1
)

µt, otherwise

(3.14)

with η = 10 and γ = 0.9. Each subproblem t is initialized using the previous subproblem solution
ϕ∗

t−1. The augmented Lagrangian method stops when h(ϕ) ≤ 10−8.
Total number of iterations before augmented Lagrangian converges: In GraN-DAG and

NOTEARS, every subproblem is approximately solved using an iterative algorithm. Let T be
the number of subproblems solved before the convergence of the augmented Lagrangian. For a
given subproblem t, let Kt be the number of iterations executed to approximately solve it. Let



I =
∑T

t=1 Kt be the total number of iterations before the augmented Lagrangian converges.
Table 3.4 reports the total number of iterations I for GraN-DAG and NOTEARS, averaged over ten
data sets. Note that the matrix exponential is evaluated once per iteration. Even though GraN-DAG
uses a stochastic gradient algorithm, it requires less iterations than NOTEARS which uses a batch
proximal quasi-Newton method. We hypothesize early stopping avoids having to wait until full
convergence before moving to the next subproblem, hence reducing the total number of iterations.
Note that GraN-DAG total run time is still larger than NOTEARS due to its gradient requiring more
computation to evaluate (total runtime ≈ 10 minutes against ≈ 1 minute for 20 nodes graphs and ≈
4 hours against ≈ 1 hour for 100 nodes graphs). GraN-DAG runtime on 100 nodes graphs can be
roughly halved when executed on GPU.

20 nodes ER1 20 nodes ER4 100 nodes ER1 100 nodes ER4

GraN-DAG 27.3± 3.6 30.4± 4.2 23.1± 0.7 23.1± 0.8
NOTEARS 67.1± 35.3 72.3± 24.3 243.6± 12.3 232.4± 12.9

Table 3.4. Total number of iterations (×103) before augmented Lagrangian converges on Gauss-
ANM data.

B. Thresholding to ensure acyclicity
The augmented Lagrangian outputs ϕ∗

T where T is the number of subproblems solved before
declaring convergence. Note that the weighted adjacency matrix Aϕ∗

T
will most likely not represent

an acyclic graph, even if we threshold as we learn, as explained in Section 3.3.4. We need to remove
additional edges to obtain a DAG (edges are removed using the mask presented in Section 3.3.4).
One option would be to remove edges one by one until a DAG is obtained, starting from the edge
(i, j) with the lowest (Aϕ∗

T
)ij up to the edge with the highest (Aϕ∗

T
)ij . This amounts to gradually

increasing the threshold ϵ until Aϕ∗
T

is acyclic. However, this approach has the following flaw:
It is possible to have (Aϕ∗

T
)ij significantly higher than zero while having θ(j) almost completely

independent of variable xi. This can happen for at least two reasons. First, the NN paths from input
i to output k might end up cancelling each others, rendering the input i inactive. Second, some
neurons of the NNs might always be saturated for the observed range of inputs, rendering some NN
paths effectively inactive without being inactive in the sense described in Section 3.3.1. Those two
observations illustrate the fact that having (Aϕ∗

T
)ij = 0 is only a sufficient condition to have θ(j)

independent of variable xi and not a necessary one.
To avoid this issue, we consider the following alternative. Consider the function L : Rd 7→ Rd

which maps all d variables to their respective conditional likelihoods, i.e. Li(x) ≜ pi(xi | x
π

ϕ∗
T

i

) ∀i.
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We consider the following expected Jacobian matrix

J ≜ Ex∼Px

∣∣∣∣∂L∂x
∣∣∣∣⊤ (3.15)

where
∣∣∂L

∂x

∣∣ is the Jacobian matrix of L evaluated at x, in absolute value (element-wise). Similarly to
(Aϕ∗

T
)ij , the entry Jij can be loosely interpreted as the strength of edge (i, j). We propose removing

edges starting from the lowest Jij to the highest, stopping as soon as acyclicity is achieved. We
believe J is better thanAϕ∗

T
at capturing which NN inputs are effectively inactive since it takes into

account NN paths cancelling each others and saturated neurons. Empirically, we found that using J
instead ofAϕ∗

T
yields better results, and thus we report the results with J in this paper.

C. Preliminary neighborhood selection and DAG Pruning
PNS: For graphs of 50 nodes or more, GraN-DAG performs a preliminary neighborhood

selection (PNS) similar to what has been proposed in Bühlmann et al. [2014]. This procedure
applies a variable selection method to get a set of possible parents for each node. This is done
by fitting an extremely randomized trees [Geurts et al., 2006] (using ExtraTreesRegressor
from scikit-learn) for each variable against all the other variables. For each node a feature
importance score based on the gain of purity is calculated. Only nodes that have a feature importance
score higher than 0.75 · mean are kept as potential parent, where mean is the mean of the feature
importance scores of all nodes. Although the use of PNS in CAM was motivated by gains in
computation time, GraN-DAG uses it to avoid overfitting, without reducing the computation time.

Pruning: Once the thresholding is performed and a DAG is obtained as described in B, GraN-
DAG performs a pruning step identical to CAM [Bühlmann et al., 2014] in order to remove spurious
edges. We use the implementation of Bühlmann et al. [2014] based on the R function gamboost
from the mboost package. For each variable xi, a generalized additive model is fitted against the
current parents of xi and a significance test of covariates is applied. Parents with a p-value higher
than 0.001 are removed from the parent set. Similarly to what Bühlmann et al. [2014] observed, this
pruning phase generally has the effect of greatly reducing the SHD without considerably changing
the SID.

Ablation study: In Table 3.5, we present an ablation study which shows the effect of
adding PNS and pruning to GraN-DAG on different performance metrics and on the negative
log-likelihood (NLL) of the training and validation set. Note that, before computing both NLL,
we reset all parameters of GraN-DAG except the mask and retrained the model on the training set
without any acyclicity constraint (acyclicity is already ensure by the masks at this point). This
retraining procedure is important since the pruning removes edges (i.e. some additional NN inputs
are masked) and it affects the likelihood of the model (hence the need to retrain).
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PNS Pruning SHD SID NLL (train) NLL (validation)

False False 1086.8±48.8 31.6±23.6 0.36±0.07 1.44±0.21
True False 540.4±70.3 17.4±16.7 0.52±0.08 1.16±0.17
False True 11.8±5.0 39.7±25.5 0.78±0.12 0.84±0.12
True True 6.1±3.3 29.3±19.5 0.78±0.13 0.83±0.12

Table 3.5. PNS and pruning ablation study for GraN-DAG (averaged over 10 datasets from ER1
with 50 nodes)

A first observation is that adding PNS and pruning improve the NLL on the validation set
while deteriorating the NLL on the training set, showing that those two steps are indeed reducing
overfitting. Secondly, the effect on SHD is really important while the effect on SID is almost
nonexistent. This can be explained by the fact that SID has more to do with the ordering of the
nodes than with false positive edges. For instance, if we have a complete DAG with a node ordering
coherent with the ground truth graph, the SID is zero, but the SHD is not due to all the false positive
edges. Without the regularizing effect of PNS and pruning, GraN-DAG manages to find a DAG
with a good ordering but with many spurious edges (explaining the poor SHD, the good SID and the
big gap between the NLL of the training set and validation set). PNS and pruning helps reducing
the number of spurious edges, hence improving SHD.

We also implemented PNS and pruning for NOTEARS and DAG-GNN to see whether their
performance could also be improved. Table 3.6 reports an ablation study for DAG-GNN and
NOTEARS. First, the SHD improvement is not as important as for GraN-DAG and is almost not
statistically significant. The improved SHD does not come close to performance of GraN-DAG.
Second, PNS and pruning do not have a significant effect of SID, as was the case for GraN-DAG.
The lack of improvement for those methods is probably due to the fact that they are not overfitting
like GraN-DAG, as the training and validation (unregularized) scores shows. NOTEARS captures
only linear relationships, thus it will have a hard time overfitting nonlinear data and DAG-GNN
uses a strong form of parameter sharing between its conditional densities which possibly cause
underfitting in a setup where all the parameters of the conditionals are sampled independently.

Moreover, DAG-GNN and NOTEARS threshold aggressively their respective weighted adja-
cency matrix at the end of training (with the default parameters used in the code), which also acts
as a form of heavy regularization, and allow them to remove many spurious edges. GraN-DAG
without PNS and pruning does not threshold as strongly by default which explains the high SHD
of Table 3.5. To test this explanation, we removed all edges (i, j) for which (Aϕ)ij < 0.33 for
GraN-DAG and obtained an SHD of 29.4±15.9 and an SID of 85.6±45.7, showing a significant
improvement over NOTEARS and DAG-GNN, even without PNS and pruning.

3This was the default value of thresholding used in NOTEARS and DAG-GNN.
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Algorithm PNS Pruning SHD SID Score (train) Score (validation)

DAG-GNN False False 56.8±11.1 322.9±103.8 -2.8±1.5 -2.2±1.6
True False 55.5±10.2 314.5±107.6 -2.1±1.6 -2.1±1.7
False True 49.4±7.8 325.1±103.7 -1.8±1.1 -1.8±1.2
True True 47.7±7.3 316.5±105.6 -1.9±1.6 -1.9±1.6

NOTEARS False False 64.2±9.5 327.1±110.9 -23.1±1.8 -23.2±2.1
True False 54.1±10.9 321.5±104.5 -25.2±2.7 -25.4±2.8
False True 49.5±8.8 327.7±111.3 -26.7±2.0 -26.8±2.1
True True 49.0±7.6 326.4±106.9 -26.23±2.2 -26.4±2.4

Table 3.6. PNS and pruning ablation study for DAG-GNN and NOTEARS (averaged over 10
datasets from ER1 with 50 nodes)

D. Large Sample Size Experiment
In this section, we test the bias-variance hypothesis which attempts to explain why CAM is on

par with GraN-DAG on Gauss-ANM data even if its model wrongly assumes that the fj functions
are additive. Table 3.7 reports the performance of GraN-DAG and CAM for different sample sizes.
We can see that, as the sample size grows, GraN-DAG ends up outperforming CAM in terms of
SID while staying on par in terms of SHD. We explain this observation by the fact that a larger
sample size reduces variance for GraN-DAG thus allowing it to leverage its greater capacity against
CAM which is stuck with its modelling bias. Both algorithms were run with their respective default
hyperparameter combination.

This experiment suggests GraN-DAG could be an appealing option in settings where the
sample size is substantial. The present paper focuses on sample sizes typically encountered in the
structure/causal learning litterature and leave this question for future work.

Sample size Method SHD SID

500 CAM 123.5 ± 13.9 1181.2 ± 160.8
GraN-DAG 130.2 ± 14.4 1246.4 ± 126.1

1000 CAM 103.7 ± 15.2 1074.7 ± 125.8
GraN-DAG 104.4 ± 15.3 942.1 ± 69.8

5000 CAM 74.1 ± 13.2 845.0 ± 159.8
GraN-DAG 71.9 ± 15.9 554.1 ± 117.9

10000 CAM 66.3 ± 16.0 808.1 ± 142.9
GraN-DAG 65.9 ± 19.8 453.4 ± 171.7

Table 3.7. Effect of sample size - Gauss-ANM 50 nodes ER4 (averaged over 10 datasets)
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E. Details on data sets generation
Synthetic data sets: For each data set type, 10 data sets are sampled with 1000 examples

each. As the synthetic data introduced in Section 3.4.1, for each data set, a ground truth DAG G is
randomly sampled following the ER scheme and then the data is generated. Unless otherwise stated,
all root variables are sampled from U [−1, 1].

• Gauss-ANM is generated following xj := fj(xπG
j
)+nj ∀j with mutually independent noises

nj ∼ N (0, σ2
j ) ∀j where the functions fj are independently sampled from a Gaussian

process with a unit bandwidth RBF kernel and σ2
j ∼ U [0.4, 0.8]. Source nodes are Gaussian

with zero mean and variance sampled from U [1, 2]
• LIN is generated following xj|xπG

j
∼ wT

j xπG
j

+ 0.2 · N (0, σ2
j ) ∀j where σ2

j ∼ U [1, 2] and

wj is a vector of |πG
j | coefficients each sampled from U [0, 1].

• ADD-FUNC is generated following xj|xπG
j
∼
∑

i∈πG
j
fj,i(xi) + 0.2 · N (0, σ2

j ) ∀j where
σ2

j ∼ U [1, 2] and the functions fj,i are independently sampled from a Gaussian process with
bandwidth one. This model is adapted from Bühlmann et al. [2014].
• PNL-GP is generated following xj|xπG

j
∼ σ(fj(xπG

j
) + Laplace(0, lj)) ∀j with the func-

tions fj independently sampled from a Gaussian process with bandwidth one and lj ∼
U [0, 1]. In the two-variable case, this model is identifiable following the Corollary 9
from Zhang and Hyvärinen [2009]. To get identifiability according to this corollary, it is
important to use non-Gaussian noise, explaining our design choices.
• PNL-MULT is generated following xj|xπG

j
∼ exp(log(

∑
i∈πG

j
xi) + |N (0, σ2

j )|) ∀j where
σ2

j ∼ U [0, 1]. Root variables are sampled from U [0, 2]. This model is adapted from Zhang
et al. [2015].

SynTReN: Ten datasets have been generated using the SynTReN generator
(http://bioinformatics.intec.ugent.be/kmarchal/SynTReN/index.html)
using the software default parameters except for the probability for complex 2-regulator interactions

that was set to 1 and the random seeds used were 0 to 9. Each dataset contains 500 samples and
comes from a 20 nodes graph.

Graph types: Erdős-Rényi (ER) graphs are generated by randomly sampling a topological order
and by adding directed edges were it is allowed independently with probability p = 2e

d2−d
were e is

the expected number of edges in the resulting DAG. Scale-free (SF) graphs were generated using
the Barabási-Albert model [Barabási and Albert, 1999] which is based on preferential attachment.
Nodes are added one by one. Between the new node and the existing nodes, m edges (where m is
equal to d or 4d) will be added. An existing node i have the probability p(ki) = ki∑

j kj
to be chosen,

where ki represents the degree of the node i. While ER graphs have a degree distribution following
a Poisson distribution, SF graphs have a degree distribution following a power law: few nodes,
often called hubs, have a high degree. Barabási [2009] have stated that these types of graphs have
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similar properties to real-world networks which can be found in many different fields, although
these claims remain controversial [Clauset et al., 2009].

F. Supplementary experiments
Gauss-ANM: The results for 20 and 100 nodes are presented in Table 3.8 and 3.9 using the

same Gauss-ANM data set types introduced in Section 3.4.1. The conclusions drawn remains
similar to the 10 and 50 nodes experiments. For GES and PC, the SHD and SID are respectively
presented in Table 3.10 and 3.11. Their performances do not compare favorably to the GraN-DAG
nor CAM. Figure 3.1 shows the entries of the weighted adjacency matrixAϕ as training proceeds
in a typical run for 10 nodes.

LIN & ADD-FUNC: Experiments with LIN and ADD-FUNC data is reported in Ta-
ble 3.12 & 3.13. The details of their generation are given in Appendix E.

PNL-GP & PNL-MULT: Table 3.14 contains the performance of GraN-DAG and other base-
lines on post nonlinear data discussed in Section 3.4.1.

ER1 ER4 SF1 SF4

SHD SID SHD SID SHD SID SHD SID

GraN-DAG 4.0 ±3.4 17.9±19.5 45.2±10.7 165.1±21.0 7.6±2.5 28.8±10.4 36.8±5.1 62.5±18.8
DAG-GNN 25.6±7.5 109.1±53.1 75.0±7.7 344.8±17.0 19.5±1.8 60.1±12.8 49.5±5.4 115.2±33.3
NOTEARS 30.3±7.8 107.3±47.6 79.0±8.0 346.6±13.2 23.9±3.5 69.4±19.7 52.0±4.5 120.5±32.5
CAM 2.7±1.8 10.6±8.6 41.0±11.9 157.9±41.2 5.7±2.6 23.3±18.0 35.6±4.5 59.1±18.8
GSF 12.3±4.6 [15.0±19.9 41.8±13.8 [153.7±49.4 7.4±3.5 [5.7±7.1 38.6±3.6 [54.9±14.4

45.6±22.9] 201.6±37.9] 27.3±13.2] 86.7±24.2]
RANDOM 103.0±39.6 94.3±53.0 117.5±25.9 298.5±28.7 105.2±48.8 81.1±54.4 121.5±28.5 204.8±38.5

Table 3.8. Results for ER and SF graphs of 20 nodes with Gauss-ANM data

ER1 ER4 SF1 SF4

SHD SID SHD SID SHD SID SHD SID

GraN-DAG 15.1±6.0 83.9±46.0 206.6±31.5 4207.3±419.7 59.2±7.7 265.4±64.2 262.7±19.6 872.0±130.4
DAG-GNN 110.2±10.5 883.0±320.9 379.5±24.7 8036.1±656.2 97.6±1.5 438.6±112.7 316.0±14.3 1394.6±165.9
NOTEARS 125.6±12.1 913.1±343.8 387.8±25.3 8124.7±577.4 111.7±5.4 484.3±138.4 327.2±15.8 1442.8±210.1
CAM 17.3±4.5 124.9±65.0 186.4±28.8 4601.9±482.7 52.7±9.3 230.3±36.9 255.6±21.7 845.8±161.3
GSF 66.8±7.3 [104.7±59.5 > 12 hours4 — 71.4±11.2 [212.7±71.1 275.9±21.0 [793.9±152.5

238.6±59.3] — 325.3±105.2] 993.4±149.2]
RANDOM 1561.6±1133.4 1175.3±547.9 2380.9±1458.0 7729.7±1056.0 2222.2±1141.2 1164.2±593.3 2485.0±1403.9 4206.4±1642.1

Table 3.9. Results for ER and SF graphs of 100 nodes with Gauss-ANM data

4Note that GSF results are missing for two data set types in Tables 3.9 and 3.14. This is because the search algorithm
could not finish within 12 hours, even when the maximal in-degree was limited to 5. All other methods could run in less
than 6 hours.
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10 nodes 20 nodes 50 nodes 100 nodes
ER1 ER4 ER1 ER4 ER1 ER4 ER1 ER4

GraN-DAG 1.7±2.5 8.3±2.8 4.0 ±3.4 45.2±10.7 5.1±2.8 102.6±21.2 15.1±6.0 206.6±31.5
GES 13.8±4.8 32.3±4.3 43.3±12.4 94.6±9.8 106.6±24.7 254.4±39.3 292.9±33.6 542.6±51.2
PC 8.4±3 34±2.6 20.136.4±6.5 73.1±5.8 44.0±11.6 183.6±20 95.2±9.1 358.8±20.6

SF1 SF4 SF1 SF4 SF1 SF4 SF1 SF4

GraN-DAG 1.2±1.1 9.9±4.0 7.6±2.5 36.8±5.1 25.5±6.2 111.3±12.3 59.2±7.7 262.7±19.6
GES 8.1±2.4 17.4±4.5 26.2±7.5 50.7±6.2 73.9±7.4 178.8±16.5 190.3±22 408.7±24.9
PC 4.8±2.4 16.4±2.8 13.6±2.1 44.4±4.6 43.1±5.7 135.4±10.7 97.6±6.6 314.2±17.5

Table 3.10. SHD for GES and PC (against GraN-DAG for reference) with Gauss-ANM data

10 nodes 20 nodes 50 nodes 100 nodes
ER1 ER4 ER1 ER4 ER1 ER4 ER1 ER4

GraN-DAG 1.7±3.1 21.8±8.9 17.9±19.5 165.1±21.0 22.4±17.8 1060.1±109.4 83.9±46.0 4207.3±419.7

GES [24.1±17.3
27.2±17.5]

[ 68.5±10.5
75±7]

[ 62.1±44
65.7±44.5]

[ 301.9±19.4
319.3±13.3]

[150.9±72.7
155.1±74]

[ 1996.6±73.1
2032.9±88.7]

[ 582.5±391.1
598.9±408.6]

[ 8054±524.8
8124.2±470.2]

PC [22.6±15.5
27.3±13.1]

[78.1±7.4
79.2±5.7]

[80.9±51.1
94.9±46.1]

[316.7±25.7
328.7±25.6]

[222.7±138
256.7±127.3]

[2167.9±88.4
2178.8±80.8]

[620.7±240.9
702.5±255.8]

[8236.9±478.5
8265.4±470.2]

SF1 SF4 SF1 SF4 SF1 SF4 SF1 SF4

GraN-DAG 4.1±6.1 16.4±6.0 28.8±10.4 62.5±18.8 90.0±18.9 271.2±65.4 265.4±64.2 872.0±130.4

GES [11.6±9.2
16.4±11.7]

[39.3±11.2
43.9±14.9]

[54.9±23.1
57.9±24.6]

[89.5±38.4
105.1±44.3]

[171.6±70.1
182.7±77]

[496.3±154.1
529.7±184.5]

[511.5±257.6
524±252.2]

[1421.7±247.4
1485.4±233.6]

PC [8.3±4.6
16.8±12.3]

[36.5±6.2
41.7±6.9]

[42.2±14
59.7±14.9]

[95.6±37
118.5±30]

[124.2±38.3
167.1±41.4]

[453.2±115.9
538±143.7]

[414.5±124.4
486.5±120.9]

[1369.2±259.9
1513.7±296.2]

Table 3.11. Lower and upper bound on the SID for GES and PC (against GraN-DAG for reference)
with Gauss-ANM data. See Appendix G for details on how to compute SID for CPDAGs.
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Figure 3.1. Entries of the weighted adjacency matrixAϕ as training proceeds in GraN-DAG for a
synthetic data set ER4 with 10 nodes. Green curves represent edges which appear in the ground
truth graph while red ones represent edges which do not. The horizontal dashed line at 10−4 is the
threshold ϵ introduced in Section 3.3.4. We can see that GraN-DAG successfully recovers most
edges correctly while keeping few spurious edges.

#Nodes 10 50
Graph Type ER1 ER4 ER1 ER4
Metrics SHD SID SHD SID SHD SID SHD SID
Method

GraN-DAG 7.2± 2.0 27.3± 8.1 30.7± 3.3 75.8± 6.9 33.9± 8.6 255.8± 158.4 181.9± 24.0 2035.8± 137.2
DAG-GNN 10.3± 3.5 39.6± 14.7 18.9± 4.8 63.7± 8.9 54.1± 9.2 330.4± 117.1 130.3± 17.3 1937.5± 89.8
NOTEARS 9.0± 3.0 35.3± 13.4 27.9± 4.3 72.1± 7.9 45.5± 7.8 310.7± 125.9 126.1± 13.0 1971.1± 134.3
CAM 10.2± 6.3 31.2± 10.9 33.6± 3.3 77.5± 2.3 36.2± 5.8 234.8± 105.1 182.5± 17.6 1948.7± 113.5
GSF 9.2± 2.9 [19.5± 14.6

31.6± 17.3]
38.6± 3.7 [73.8± 7.6

85.2± 8.3]
46.7± 4.1 [176.4± 98.8

215.0± 108.9]
> 12 hours

RANDOM 22.0± 2.9 30.0± 13.8 34.4± 2.4 78.8± 5.5 692.6± 7.5 360.3± 141.4 715.9± 16.0 1932.7± 40.2

Table 3.12. Experiments on LIN data
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#Nodes 10 50
Graph Type ER1 ER4 ER1 ER4
Metrics SHD SID SHD SID SHD SID SHD SID
Method

GraN-DAG 2.8± 2.5 7.5± 7.7 14.5± 5.2 52.6± 10.8 16.6± 5.3 103.6± 52.9 86.4± 21.6 1320.6± 145.8
DAG-GNN 10.1± 3.4 23.3± 11.5 18.3± 3.6 56.4± 6.1 45.5± 7.9 261.1± 88.8 224.3± 31.6 1741.0± 138.3
NOTEARS 11.1± 5.0 16.9± 11.3 20.3± 4.9 53.5± 10.5 53.7± 9.5 276.1± 96.8 201.8± 22.1 1813.6± 148.4
CAM 2.5± 2.0 7.9± 6.4 6.0± 5.6 29.3± 19.3 9.6± 5.1 39.0± 34.1 42.9± 6.6 857.0± 184.5
GSF 9.3± 3.9 [13.9± 8.3

24.1± 12.5]
29.5± 4.3 [60.3± 11.6

75.0± 4.5]
49.5± 5.1 [151.5± 73.8

213.9± 82.5]
> 12 hours

RANDOM 23.0± 2.2 26.9± 18.1 33.5± 2.3 76.0± 6.2 689.7± 6.1 340.0± 113.6 711.5± 9.0 1916.2± 65.8

Table 3.13. Experiments on ADD-FUNC data

PNL-GP PNL-MULT
SHD SID SHD SID

10 nodes ER1 GraN-DAG 1.6±3.0 3.9±8.0 13.1±3.8 35.7±12.3
DAG-GNN 11.5±6.8 32.4±19.3 17.900±6.2 40.700±14.743
NOTEARS 10.7±5.5 34.4±19.1 14.0±4.0 38.6±11.9
CAM 1.5±2.6 6.8±12.1 12.0±6.4 36.3±17.7
GSF 6.2±3.3 [7.7±8.7, 18.9±12.4] 10.7±3.0 [9.8±11.9, 25.3±11.5]
RANDOM 23.8±2.9 36.8±19.1 23.7±2.9 37.7±20.7

10 nodes ER4 GraN-DAG 10.9±6.8 39.8±21.1 32.1±4.5 77.7±5.9
DAG-GNN 32.3±4.3 75.8±9.3 37.0±3.1 82.7±6.4
NOTEARS 34.1±3.2 80.8±5.5 37.7±3.0 81.700±7.258
CAM 8.4±4.8 30.5±20.0 34.4±3.9 79.6±3.8
GSF 25.0±6.0 [44.3±14.5, 66.1±10.1] 31.3±5.4 [58.6±8.1, 76.4±9.9]
RANDOM 35.0±3.3 80.0±5.1 33.6±3.5 76.2±7.3

50 nodes ER1 GraN-DAG 16.5±7.0 64.1±35.4 38.2±11.4 213.8±114.4
DAG-GNN 56.5±11.1 334.3±80.3 83.9±23.8 507.7±253.4
NOTEARS 50.1±9.9 319.1±76.9 78.5±21.5 425.7±197.0
CAM 5.1±2.6 10.7±12.4 44.9±9.9 284.3±124.9
GSF 31.2±6.0 [59.5±34.1, 122.4±32.0] 46.3±12.1 [65.8±62.2, 141.6±72.6]
RANDOM 688.4±4.9 307.0±98.5 691.3±7.3 488.0±247.8

50 nodes ER4 GraN-DAG 68.7±17.0 1127.0±188.5 211.7±12.6 2047.7±77.7
DAG-GNN 203.8±18.9 2173.1±87.7 246.7±16.1 2239.1±42.3
NOTEARS 189.5±16.0 2134.2±125.6 220.0±9.9 2175.2±58.3
CAM 48.2±10.3 899.5±195.6 208.1±14.8 2029.7±55.4
GSF 105.2±15.5 [1573.7±121.2, 1620±102.8] > 12 hours —
RANDOM 722.3±9.0 1897.4±83.7 710.2±9.5 1935.8±56.9

Table 3.14. Synthetic post nonlinear data sets

G. Metrics
SHD takes two partially directed acyclic graphs (PDAG) and counts the number of edge for

which the edge type differs in both PDAGs. There are four edge types: i← j, i→ j, i −− j and
i j. Since this distance is defined over the space of PDAGs, we can use it to compare DAGs with
DAGs, DAGs with CPDAGs and CPDAGs with CPDAGs. When comparing a DAG with a CPDAG,
having i← j instead of i −− j counts as a mistake.
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SHD-C is very similar to SHD. The only difference is that both DAGs are first mapped to their
respective CPDAGs before measuring the SHD.

Introduced by Peters and Bühlmann [2015], SID counts the number of interventional distri-
bution of the form p(xi| do(xj = x̂j)) that would be miscalculated using the parent adjustment

formula [Pearl, 2009a] if we were to use the predicted DAG instead of the ground truth DAG to form
the parent adjustment set. Some care needs to be taken to evaluate the SID for methods outputting a
CPDAG such as GES and PC. Peters and Bühlmann [2015] proposes to report the SID of the DAGs
which have approximately the minimal and the maximal SID in the Markov equivalence class given
by the CPDAG. See Peters and Bühlmann [2015] for more details.

H. Hyperparameters
All GraN-DAG runs up to this point were performed using the following set of hyperparameters.

We used RMSprop as optimizer with learning rate of 10−2 for the first subproblem and 10−4 for
all subsequent suproblems. Each NN has two hidden layers with 10 units (except for the real
and pseudo-real data experiments of Table 3.3 which uses only 1 hidden layer). Leaky-ReLU is
used as activation functions. The NN are initialized using the initialization scheme proposed in
Glorot and Bengio [2010a] also known as Xavier initialization. We used minibatches of 64 samples.
This hyperparameter combination have been selected via a small scale experiment in which many
hyperparameter combinations have been tried manually on a single data set of type ER1 with 10
nodes until one yielding a satisfactory SHD was obtained. Of course in practice one cannot select
hyperparameters in this way since we do not have access to the ground truth DAG. In Appendix I,
we explain how one could use a held-out data set to select the hyperparameters of score-based
approaches and report the results of such a procedure on almost settings presented in this paper.

For NOTEARS, DAG-GNN, and GSF, we used the default hyperparameters found in the authors
code. It (rarely) happens that NOTEARS and DAG-GNN returns a cyclic graph. In those cases,
we removed edges starting from the weaker ones to the strongest (according to their respective
weighted adjacency matrices), stopping as soon as acyclicity is achieved (similarly to what was
explained in Appendix B for GraN-DAG). For GES and PC, we used default hyperparameters of
the pcalg R package. For CAM, we used the the default hyperparameters found in the CAM R
package, with default PNS and DAG pruning.

I. Hyperparameter Selection via Held-out Score
Most structure/causal learning algorithms have hyperparameters which must be selected prior to

learning. For instance, NOTEARS and GES have a regularizing term in their score controlling the
sparsity level of the resulting graph while CAM has a thresholding level for its pruning phase (also
controlling the sparsity of the DAG). GraN-DAG and DAG-GNN have many hyperparameters such
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as the learning rate and the architecture choice for the neural networks (i.e. number of hidden layers
and hidden units per layer). One approach to selecting hyperparameters in practice consists in trying
multiple hyperparameter combinations and keeping the one yielding the best score evaluated on a
held-out set [Koller and Friedman, 2009, p. 960]. By doing so, one can hopefully avoid finding a
DAG which is too dense or too sparse since if the estimated graph contains many spurious edges, the
score on the held-out data set should be penalized. In the section, we experiment with this approach
on almost all settings and all methods covered in the present paper.

Experiments: We explored multiple hyperparameter combinations using random
search [Bergstra and Bengio, 2012]. Table 3.15 to Table 3.23 report results for each dataset types.
Each table reports the SHD and SID averaged over 10 data sets and for each data set, we tried 50
hyperparameter combinations sampled randomly (see Table 3.24 for sampling schemes). The
hyperparameter combination yielding the best held-out score among all 50 runs is selected per data

set (i.e. the average of SHD and SID scores correspond to potentially different hyperparameter
combinations on different data sets). 80% of the data was used for training and 20% was held
out (GraN-DAG uses the same data for early stopping and hyperparameter selection). Note that
the held-out score is always evaluated without the regularizing term (e.g. the held-out score of
NOTEARS was evaluated without its L1 regularizer).

The symbols ++ and + indicate the hyperparameter search improved performance against default
hyperparameter runs above one standard deviation and within one standard deviation, respectively.
Analogously for −− and − which indicate a performance reduction. The flag ∗∗∗ indicate that, on
average, less than 10 hyperparameter combinations among the 50 tried allowed the method to
converge in less than 12 hours. Analogously, ∗∗ indicates between 10 and 25 runs converged and ∗

indicates between 25 and 45 runs converged.
Discussion: GraN-DAG and DAG-GNN are the methods benefiting the most from the hyperpa-

rameter selection procedure (although rarely significantly). This might be explained by the fact that
neural networks are in general very sensitive to the choice of hyperparameters. However, not all
methods improved their performance and no method improves its performance in all settings. GES
and GSF for instance, often have significantly worse results. This might be due to some degree of
model misspecification which renders the held-out score a poor proxy for graph quality. Moreover,
for some methods the gain from the hyperparameter tuning might be outweighed by the loss due to
the 20% reduction in training samples.

Additional implementation details for held-out score evaluation: GraN-DAG makes use
of a final pruning step to remove spurious edges. One could simply mask the inputs of the NN
corresponding to removed edges and evaluate the held-out score. However, doing so yields an
unrepresentative score since some masked inputs have an important role in the learned function and
once these inputs are masked, the quality of the fit might greatly suffer. To avoid this, we retrained
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the whole model from scratch on the training set with the masking fixed to the one recovered after
pruning. Then, we evaluate the held-out score with this retrained architecture. During this retraining
phase, the estimated graph is fixed, only the conditional densities are relearned. Since NOTEARS
and DAG-GNN are not always guaranteed to return a DAG (although they almost always do), some
extra thresholding might be needed as mentioned in Appendix H. Similarly to GraN-DAG’s pruning
phase, this step can seriously reduce the quality of the fit. To avoid this, we also perform a retraining
phase for NOTEARS and DAG-GNN. The model of CAM is also retrained after its pruning phase
prior to evaluating its held-out score.

Graph Type ER1 ER4 SF1 SF4
Metrics SHD SID SHD SID SHD SID SHD SID
Method

GraN-DAG 1.0± 1.6+ 0.4± 1.3++ 5.5± 2.8+ 9.7± 8.0++ 1.3± 1.8− 3.0± 3.4+ 9.6± 4.5+ 15.1± 6.1+

DAG-GNN 10.9± 2.6+ 35.5± 13.6+ 38.3± 2.9−− 84.4± 3.5− 9.9± 1.7+ 30.3± 18.8− 21.4± 2.1− 44.0± 15.5+

NOTEARS 26.7± 6.9−− 35.2± 10.6+ 20.9± 6.6++ 62.0± 6.7++ 20.4± 9.6−− 38.8± 16.7− 26.9± 7.4− 61.1± 13.8−

CAM 3.0± 4.2− 2.2± 5.7− 7.7± 3.1++ 23.2± 14.7+ 2.4± 2.5− 5.2± 5.5+ 9.6± 3.1+ 20.1± 6.8−

GSF 5.3± 3.3+ [8.3± 13.2+

15.4± 13.5]
23.1± 7.9− [56.1± 20.4−

65.1± 19.3]
3.3± 2.5− [7.0± 11.6−

12.2± 11.0]
14.2± 5.6−− [26.2± 11.1−

36.9± 21.6]
GES 38.6± 2.1−− [20.3± 15.4+

28.3± 18.4]
33.0± 3.4− [66.2± 7.0+

76.6± 4.3]
38.3± 2.4−− [8.8± 5.2−

25.5± 18.2]
33.6± 4.8−− [32.7± 12.7−

52.0± 14.0]

Table 3.15. Gauss-ANM - 10 nodes with hyperparameter search

Graph Type ER1 ER4 SF1 SF4
Metrics SHD SID SHD SID SHD SID SHD SID
Method

GraN-DAG 3.8± 3.3+ 15.0± 14.0+ 105.6± 16.5− 1131.7± 91.0− 24.7± 6.4+ 86.5± 34.6+ 112.7± 15.5− 268.3± 85.8+

DAG-GNN 47.0± 7.8+ 268.1± 118.0+ 196.2± 14.4− 1972.8± 110.6++ 51.8± 5.6− 166.5± 48.9+ 144.2± 11.6+ 473.4± 105.4+

NOTEARS 193.5± 77.3−− 326.0± 99.1+ 369.5± 81.9−− 2062.0± 107.7+ 104.8± 22.4−− 290.3± 136.8− 213.0± 35.1−− 722.7± 177.3−

CAM 4.0± 2.7+ 21.1± 22.1+ 105.6± 20.9− 1225.9± 205.7− 23.8± 6.0+ 81.5± 15.3+ 112.2± 14.0− 333.8± 156.0−

GSF 24.9± 7.4+
∗ [40.0± 26.3−

∗
77.5± 45.3]

129.3± 20.4−−
∗ [1280.8± 202.3−−

∗
1364.1± 186.7]

35.3± 6.9−
∗ [99.7± 41.7−

∗
151.9± 59.7]

121.6± 11.7−
∗∗∗ [310.8± 108.1−

∗∗∗
391.9± 93.3]

GES 1150.1± 9.8−− [112.7± 71.1+

132.0± 89.0]
1066.1± 11.7−− [1394.3± 81.8++

1464.8± 63.8]
1161.7± 7.0−− [322.8± 211.1−

336.0± 215.4]
1116.1± 14.2−− [1002.7± 310.9−−

1094.0± 345.1]

Table 3.16. Gauss-ANM - 50 nodes with hyperparameter search

Graph Type ER1 ER4 SF1 SF4
Metrics SHD SID SHD SID SHD SID SHD SID
Method

GraN-DAG 2.7± 2.3+ 9.6± 10.3+ 35.9± 11.8+ 120.4± 37.0++ 6.5± 2.4+ 17.5± 6.3++ 35.6± 4.1+ 54.8± 14.3+

DAG-GNN 21.0± 6.1+ 98.8± 42.2+ 77.2± 6.5− 345.6± 18.6− 19.1± 0.7+ 55.0± 20.1+ 50.2± 5.4− 118.7± 33.2−

NOTEARS 101.5± 39.6−− 100.4± 47.0+ 124.0± 16.3−− 267.0± 46.5++ 55.0± 28.2−− 87.6± 26.9− 66.7± 8.3−− 154.6± 43.0−

CAM 2.8± 2.2− 11.5± 10.2− 64.3± 29.3− 121.7± 73.1+ 5.5± 1.6+ 19.3± 7.8+ 36.0± 5.1− 66.3± 28.6−

GSF 11.6± 3.0+ [26.4± 13.3−

49.8± 26.5]
46.2± 12.6− [172.7± 40.8−

213.5± 38.6]
12.8± 2.1−− [32.1± 14.0−−

56.2± 13.8]
42.3± 5.1− [68.9± 27.7−

95.1± 33.8]
GES 169.9± 5.0−− [45.4± 29.2+

57.2± 36.6]
142.8± 7.7−−

∗ [223.3± 33.6++
∗

254.7± 22.0]
168.1± 3.3−− [46.7± 21.7+

53.3± 20.0]
162.2± 10.4−− [151.1± 57.4−−

195.8± 57.4]

Table 3.17. Gauss-ANM - 20 nodes with hyperparameter search
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Graph Type ER1 ER4 SF1 SF4
Metrics SHD SID SHD SID SHD SID SHD SID
Method

GraN-DAG 15.1± 7.5+ 65.1± 33.2+ 191.6± 17.8+ 4090.7± 418.0+ 51.6± 10.2+ 210.6± 51.9++ 255.7± 21.1+ 790.5± 159.7+

DAG-GNN 103.9± 9.1+ 757.6± 215.0+ 387.1± 25.3− 7741.9± 522.5+ 103.5± 8.2− 391.7± 60.0+ 314.8± 16.3+ 1257.3± 185.2+

NOTEARS 421.3± 207.0−− 945.7± 339.7− 631.1± 136.6−− 8272.4± 444.2− 244.3± 63.8−− 815.6± 346.5− 482.3± 114.1−− 1929.7± 363.1−−

CAM 12.3± 4.9++ 128.0± 66.3− 198.8± 22.2− 4602.2± 523.7− 51.1± 9.4+ 233.6± 62.3− 255.7± 22.2− 851.4± 206.0−

GSF 100.2± 9.9−−
∗∗ [719.8± 242.1−−

∗∗
721.1± 242.9]

387.6± 23.9∗∗∗ [7535.1± 595.2∗∗∗
7535.1± 595.2]

67.3± 14.0+
∗∗∗ [254.5± 35.4−

∗∗∗
340.4± 70.4]

315.1± 16.7−−
∗∗∗ [1214.0± 156.4−−

∗∗∗
1214.0± 156.4]

GES 4782.5± 22.9−− [362.3± 267.7+

384.1± 293.6]
4570.1± 27.9−− [5400.7± 299.2++

5511.5± 308.5]
4769.1± 26.7−− [1311.1± 616.6−−

1386.2± 713.9]
4691.3± 47.3−− [3882.7± 1010.6−−

3996.7± 1075.7]

Table 3.18. Gauss-ANM - 100 nodes with hyperparameter search

#Nodes 10 50
Graph Type ER1 ER4 ER1 ER4
Metrics SHD SID SHD SID SHD SID SHD SID
Method

GraN-DAG 1.2± 2.2+ 1.9± 4.2+ 9.8± 4.9+ 29.0± 17.6+ 12.8± 4.9+ 55.3± 24.2+ 73.9± 16.8− 1107.2± 144.7+

DAG-GNN 10.6± 4.9+ 35.8± 19.6− 38.6± 2.0−− 82.2± 5.7−− 48.1± 8.4+ 330.4± 69.9+ 192.5± 19.2+ 2079.5± 120.9+

NOTEARS 20.6± 11.4− 30.5± 18.8+ 24.2± 6.5++ 66.4± 6.9++ 102.1± 27.3−− 299.8± 85.8+ 660.0± 258.2−− 1744.0± 232.9++

CAM 2.7± 4.0− 6.4± 11.8+ 8.7± 4.5− 30.9± 20.4− 4.0± 2.4+ 10.7± 12.4+ 52.3± 8.5− 913.9± 209.3−

GSF 12.9± 3.9−−
∗∗∗ [10.5± 8.7−−

∗∗∗
53.6± 23.8]

40.7± 1.3−−
∗∗ [79.2± 3.8−−

∗∗
79.2± 3.8]

48.8± 3.9−−
∗∗ [281.6± 70.7−−

∗∗
281.6± 70.7]

199.9± 15.2−−
∗∗∗ [1878.0± 122.4−−

∗∗∗
1948.4± 139.6]

Table 3.19. PNL-GP with hyperparameter search

#Nodes 10 50
Graph Type ER1 ER4 ER1 ER4
Metrics SHD SID SHD SID SHD SID SHD SID
Method

GraN-DAG 10.0± 4.5+ 29.1± 9.7+ 32.9± 3.3− 76.7± 4.1+ 59.8± 28.2− 213.6± 97.3+ 272.1± 69.4− 2021.6± 185.8+

DAG-GNN 14.6± 3.1++ 36.9± 10.6+ 38.9± 2.0− 85.8± 1.2−− 64.3± 27.8+ 508.8± 317.2− 212.5± 12.3++ 2216.9± 95.6+

NOTEARS 28.8± 9.1−− 30.3± 11.8+ 35.4± 3.8+ 78.4± 7.5+ 160.2± 67.5−− 443.5± 205.1− 229.2± 25.4− 2158.8± 70.3+

CAM 17.2± 8.0− 33.7± 14.4+ 32.3± 6.5+ 76.6± 8.2+ 97.5± 71.1− 282.3± 123.8+ 251.0± 25.9−− 2026.2± 58.2+

GSF 15.6± 4.4−−
∗∗ [10.0± 6.3−−

∗∗
60.1± 17.2]

39.3± 2.2−−
∗∗ [76.0± 9.6−−

∗∗
79.9± 5.3]

66.4± 14.4−−
∗∗∗ [145.1± 96.1−−

∗∗∗
618.8± 257.0]

> 12 hours

Table 3.20. PNL-MULT with hyperparameter search

#Nodes 10 50
Graph Type ER1 ER4 ER1 ER4
Metrics SHD SID SHD SID SHD SID SHD SID
Method

GraN-DAG 10.1± 3.9− 28.7± 14.7− 34.7± 2.9−− 79.5± 4.4− 40.8± 10.3− 236.3± 101.7+ 256.9± 55.7−− 2151.4± 144.3−

DAG-GNN 9.0± 2.7++ 35.6± 11.4− 19.6± 4.6+ 63.9± 7.5− 48.3± 6.8+ 381.7± 145.4− 149.7± 17.2++ 2070.7± 51.9−−

NOTEARS 14.0± 4.1−−
∗ 32.2± 7.9+

∗ 20.7± 5.1++ 63.1± 8.0++ 87.7± 44.3−
∗ 294.3± 99.3+

∗ 200.3± 67.1−− 1772.7± 143.7++

CAM 8.8± 6.0+ 25.8± 13.5+ 33.9± 2.8− 77.1± 4.5+ 34.8± 7.0+ 221.2± 98.3+ 202.2± 14.3−− 1990.8± 97.5−

GSF 10.7± 3.5− [15.8± 8.4−

45.2± 20.2]
33.4± 3.3++ [71.7± 11.5+

77.3± 6.1]
54.4± 6.5−−

∗ [158.1± 115.9−
∗

560.9± 220.7]
195.6± 9.9∗∗ [2004.9± 85.2∗∗

2004.9± 85.2]

Table 3.21. LIN with hyperparameter search
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#Nodes 10 50
Graph Type ER1 ER4 ER1 ER4
Metrics SHD SID SHD SID SHD SID SHD SID
Method

GraN-DAG 2.6± 2.4+ 4.3± 4.3+ 7.0± 3.1++ 37.1± 12.4++ 13.2± 6.7+ 72.1± 55.2+ 90.1± 25.6− 1241.7± 289.8+

DAG-GNN 8.7± 2.8++ 22.3± 9.4+ 25.3± 3.8++ 63.6± 8.6++ 44.7± 9.7++ 306.9± 114.7+ 194.0± 20.4+ 1949.3± 107.1+

NOTEARS 21.2± 11.5−
∗ 15.5± 9.9+

∗ 13.3± 4.3++ 41.3± 11.5++ 186.8± 83.0−− 276.9± 92.1− 718.4± 170.4−− 1105.9± 250.1++

CAM 3.0± 2.2− 8.1± 6.3− 6.2± 5.5− 28.5± 21.5+ 10.0± 4.6− 44.2± 32.1− 46.6± 9.5− 882.5± 186.5−

GSF 5.5± 4.1+ [7.5± 12.3+

16.3± 12.9]
19.1± 7.0++ [44.5± 19.7+

60.4± 16.5]
29.8± 7.6++

∗ [44.6± 42.6++
∗

96.8± 46.7]
140.4± 31.7∗∗∗ [1674.4± 133.9∗∗∗

1727.6± 145.2]

Table 3.22. ADD-FUNC with hyperparameter search

Data Type Protein signaling data set SynTReN - 20 nodes
Metrics SHD SHD-C SID SHD SHD-C SID
Method

GraN-DAG 12.0+ 9.0+ 48.0− 41.2± 9.6− 43.7± 8.3− 144.3± 61.3+

GraN-DAG++ 14.0− 11.0− 57.0− 46.9± 14.9− 49.5± 14.7− 158.4± 61.5−

DAG-GNN 16.0 14.0+ 59.0− 32.2± 5.0++ 32.3± 5.6++ 194.2± 50.2−

NOTEARS 15.0+ 14.0+ 58.0− 44.2± 27.5++ 45.8± 27.7++ 183.1± 48.4−−

CAM 11.0+ 9.0 51.0+ 101.7± 37.2−− 105.6± 36.6−− 111.5± 25.3++

GSF 20.0− 14.0− [37.0+

60.0]
27.8± 5.4++

∗ 27.8± 5.4++
∗ [207.6± 55.4−−

∗
209.6± 59.1]

GES 47.0− 50.0− [37.0+

47.0]
167.5± 5.6−− 172.2± 7.0−− [75.3± 24.4++

97.6± 30.8]

Table 3.23. Results for real and pseudo real data sets with hyperparameter search
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Hyperparameter space

GraN-DAG

Log(learning rate) ∼ U [−2,−3] (first subproblem)
Log(learning rate) ∼ U [−3,−4] (other subproblems)
ϵ ∼ U{10−3, 10−4, 10−5}
Log(pruning cutoff) ∼ U{−5,−4,−3,−2,−1}
# hidden units ∼ U{4, 8, 16, 32}
# hidden layers ∼ U{1, 2, 3}
Constraint convergence tolerance ∼ U{10−6, 10−8, 10−10}
PNS threshold ∼ U [0.5, 0.75, 1, 2]

DAG-GNN

Log(learning rate) ∼ U [−4,−2]
# hidden units in encoder ∼ U{16, 32, 64, 128, 256}
# hidden units in decoder ∼ U{16, 32, 64, 128, 256}
Bottleneck dimension (dimension of Z) ∼ U{1, 5, 10, 50, 100}
Constraint convergence tolerance ∼ U{10−6, 10−8, 10−10}

NOTEARS
L1 regularizer coefficient ∼ U{0.001, 0.005, 0.01, 0.05, 0.1, 0.5}
Final threshold ∼ U{0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1}
Constraint convergence tolerance ∼ U{10−6, 10−8, 10−10}

CAM Log(Pruning cutoff) ∼ U [−6, 0]
GSF Log(RKHS regression regularizer) ∼ U [−4, 4]
GES Log(Regularizer coefficient) ∼ U [−4, 4]

Table 3.24. Hyperparameter search spaces for each algorithm
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Prologue to the Second Contribution

Article Details
Differentiable Causal Discovery from Interventional Data
by Philippe Brouillard ∗, Sébastien Lachapelle ∗, Alexandre Lacoste, Simon Lacoste-Julien &

Alexandre Drouin. This work was published at the Thirty-fourth Conference on Neural Information
Processing Systems (NeurIPS 2020) with a spotlight.
∗Equal contributions.

Contributions of the Authors
Philippe Brouillard implemented the method, led the experiments, made an extensive literature

review on structure learning methods using interventional data, integrated baseline methods in
our experiment pipeline. Sébastien Lachapelle suggested the objective that DCDI maximizes,
wrote the theory and proofs and led the scalability experiments. Alexandre Lacoste and Simon
Lacoste-Julien contributed to the writing and provided supervision. Alexandre Drouin provided
supervision, contributed to the writing, led large scale experiments with hyperparameter search and
integrated the deep sigmoidal flow in the code base.

Context and Limitations
Differentiable causal discovery from interventional data (DCDI) can be thought of as a direct

extension of GraN-DAG along two axes: (i) DCDI can leverage interventional data (which alleviates
the problem of identifiability); and (ii) it can model much more complex causal dependencies
than GraN-DAG, thanks to normalizing flows. We also highlighted an advantage of continuous
constrained methods for DAG learning: they scale seamlessly with dataset size, especially when
contrasted with constrained-based methods which rely on kernel-based independence tests.

Although optimization was improved by the usage of Gumbel-sigmoid masks to learn the causal
graph (see also Ng et al. [2019], Ke et al. [2019] which were also using such masks) as opposed to
GraN-DAG which was using a holistic constraint on the weights of the neural networks, optimization



remains perhaps the most important challenge. Computationally, DCDI suffers from the same issues
as GraN-DAG, namely the cubic cost as a function of the number of variables. However, more
recent developments have proposed solutions, which we discuss next.

Recent developments
Lopez et al. [2022] proposed differentiable causal discovery of factor graphs (DCD-FG), an

extension of DCDI which scales to thousands of variables and showed it could beat the state of
the art when predicting the effect of unseen perturbations in gene regulatory networks (also see
Weinstock et al. [2023] for a similar application of causal discovery). The idea is to limit the space
of graphs to some type of low-rank graphs they call factor-DAGs, which encodes the assumption that
sets of variables tend to act together as parents of other variables. This constraint on the structure of
the dependencies can be combined with the computationally cheaper algebraic characterization of
acyclicity proposed by Lee et al. [2020] to get a cost of O(md) for the evaluation of the gradient of
the constraint, down from O(d3), where d is the number of nodes and m is the number of factors
(which is picked so that m << d). This contribution illustrates the flexibility of gradient-based
approaches to structure learning. Indeed, the neural networks used to model the conditional densities
can be adapted to encode specific types of inductive biases that are suitable for the task at hand.
In the case of DCD-FG, the low-rank assumption appears to be very well suited for learning a
gene regulatory network, where genes are believed to act in group. Note that Fang et al. [2023]
also explored low-rank assumptions on the weighted adjacency graph and proposed a low-rank
variant of GraN-DAG. Different variations of NOTEARS [Zheng et al., 2018] and DCDI have
been proposed, for instance SDCD [Nazaret et al., 2023], which proposed a more stable acyclicity
constraint, and NODAGS-Flow [Guruswamy Sethuraman et al., 2023], which extends differentiable
causal discovery to cyclic graphs.

The optimization of most differentiable causal discovery methods rely on the augmented
Lagrangian (Section 2.6.1) to enforce the acyclicity constraint. The original motivation to use this
approach in this context is that, the penalty term does not have to go to infinity in order to converge
to a feasible solution, contrarily to the penalty method, a simpler alternative to the augmented
Lagrangian [Zheng et al., 2018, Bertsekas, 1999]. In Ng et al. [2022], we clarified that, for this
argument to hold, the constraint must satisfy some regularity condition which is not satisfied by
the acyclicity constraints. We further show empirically that, in the differentiable causal discovery
setting, the augmented Lagrangian method and the penalty method have very similar behaviors.
A consequence of this observation is that, in order to converge to a feasible solution, the penalty
coefficient must go to infinity, which might result in an ill-conditioned loss landscape making
optimization especially challenging.
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DCDI treats the estimated causal graph, which is discrete, as random to enable the use of
gradient descent to optimize the parameters of its distribution, which are continuous. Even if this
approach effectively learns a distribution over graphs, this should be thought of as a trick to allow
for gradient-based optimization where the end goal is still to output a single causal graph, not a
distribution over graphs (the distribution converges to a point mass on a single graph in practice).
More recent works have proposed Bayesian approaches where one commits to a prior distribution
over graphs, p(G), and somehow estimates a posterior over graphs given a dataset, p(G | D), which
quantifies our uncertainty about the graph, either due to limited data or lack of identifiability. For
instances, Annadani et al. [2021] and [Lorch et al., 2021] propose variational methods to estimate the
intractable posterior over graphs while Deleu et al. [2022] and Nishikawa-Toomey et al. [2023] rely
on the recently proposed framework of generative flow networks (GFlowNets) [Bengio et al., 2023].
This class of approach seems particularly promising when integrated within an active learning loop
which, based on the uncertainty of various edges, decides which intervention is more likely to
reduce our uncertainty about the causal graph or a specific causal query of interest [Toth et al., 2022,
Scherrer et al., 2022].

A whole other approach to causal discovery consists in training a black-box model to predict a
causal graph from a dataset of observations [Lopez-Paz et al., 2015, Li et al., 2020, Wu et al., 2024],
possibly with interventions [Ke et al., 2023]. These models are trained on synthetically generated
datasets sampled from randomly generated causal models where the known causal graph can be
used as a label for supervised learning. The methodology is sound: (i) choose assumptions you are
willing to make about the ground-truth causal model, (ii) generate datasets sampled from causal
models satisfying your assumptions, (iii) train a model to predict causal graphs from datasets and (iv)
use that predictor as a causal discovery algorithm for new datasets. If the assumptions made in the
first place are sufficient to have identifiability, the graph predictor should be able to predict the causal
graph correctly, given it was trained on sufficiently many causal discovery tasks. This approach
mirrors more classical discovery techniques: Choose assumptions and then design an algorithm that
can leverage these assumptions to estimate a causal graph from (interventional) observations. These
black-box supervised methods show a surprising ability to generalize to novel synthetic causal
discovery tasks, with potentially different kinds of functional relationships, but it remains difficult
to show that this is not due to the black-box predictor “picking up” on artifacts specific to how the
synthetic data is generated. This is less of a concern for more standard causal discovery algorithms
which are not “discovered” by training on generated dataset-graph pairs. Encouragingly, some
of these studies have shown that these learned predictors significantly outperform more standard
methods (including DCDI) on more realistic data such as Sachs et al. [2005] and the BnLearn
repository [Elidan, 2001]. It will be exciting to see whether further studies on real-data will confirm
this trend.
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Chapter 4

Differentiable Causal Discovery from Interventional
Data

Abstract
Learning a causal directed acyclic graph from data is a challenging task that involves solving

a combinatorial problem for which the solution is not always identifiable. A new line of work
reformulates this problem as a continuous constrained optimization one, which is solved via the
augmented Lagrangian method. However, most methods based on this idea do not make use of
interventional data, which can significantly alleviate identifiability issues. This work constitutes a
new step in this direction by proposing a theoretically-grounded method based on neural networks
that can leverage interventional data. We illustrate the flexibility of the continuous-constrained
framework by taking advantage of expressive neural architectures such as normalizing flows. We
show that our approach compares favorably to the state of the art in a variety of settings, including
perfect and imperfect interventions for which the targeted nodes may even be unknown.

4.1. Introduction
The inference of causal relationships is a problem of fundamental interest in science. In all fields

of research, experiments are systematically performed with the goal of elucidating the underlying
causal dynamics of systems. This quest for causality is motivated by the desire to take actions that
induce a controlled change in a system. Achieving this requires to answer questions, such as “what
would be the impact on the system if this variable were changed from value x to y?”, which cannot
be answered without causal knowledge [Pearl, 2009b].

In this work, we address the problem of data-driven causal discovery [Heinze-Deml et al.,
2018a]. Our goal is to design an algorithm that can automatically discover causal relationships from
data. More formally, we aim to learn a causal graphical model (CGM) [Peters et al., 2017], which



consists of a joint distribution coupled with a directed acyclic graph (DAG), where edges indicate
direct causal relationships. Achieving this based on observational data alone is challenging since,
under the faithfulness assumption, the true DAG is only identifiable up to a Markov equivalence

class [Verma and Pearl, 1990]. Fortunately, identifiability can be improved by considering interven-
tional data, i.e., the outcome of some experiments. In this case, the DAG is identifiable up to an
interventional Markov equivalence class, which is a subset of the Markov equivalence class [Yang
et al., 2018, Hauser and Bühlmann, 2012], and, when observing enough interventions [Eberhardt,
2008, Eberhardt et al., 2005], the DAG is exactly identifiable. In practice, it may be possible for
domain experts to collect such interventional data, resulting in clear gains in identifiability. For in-
stance, in genomics, recent advances in gene editing technologies have given rise to high-throughput
methods for interventional gene expression data [Dixit et al., 2016].

Nevertheless, even with interventional data at hand, finding the right DAG is challenging. The
solution space is immense and grows super-exponentially with the number of variables. Recently,
Zheng et al. [2018] proposed to cast this search problem as a constrained continuous-optimization
problem, avoiding the computationally-intensive search typically performed by score-based and
constraint-based methods [Peters et al., 2017]. The work of Zheng et al. [2018] was limited to
linear relationships, but was quickly extended to nonlinear ones via neural networks [Lachapelle
et al., 2020, Yu et al., 2019a, Zheng et al., 2020, Ng et al., 2019, Kalainathan et al., 2018, Zhu
and Chen, 2020]. Yet, these approaches do not make use of interventional data and must therefore
rely on strong parametric assumptions (e.g., gaussian additive noise models). Bengio et al. [2020]
leveraged interventions and continuous optimization to learn the causal direction in the bivariate
setting. The follow-up work of Ke et al. [2019] generalized to the multivariate setting by optimizing
an unconstrained objective with regularization inspired by Zheng et al. [2018], but lacked theoretical
guarantees. In this work, we propose a theoretically-grounded differentiable approach to causal dis-
covery that can make use of interventional data (with potentially unknown targets) and that relies on
the constrained-optimization framework of Zheng et al. [2018] without making strong assumptions
about the functional form of causal mechanisms, thanks to expressive density estimators.

4.1.1. Contributions

• We propose Differentiable Causal Discovery with Interventions (DCDI): a general differen-
tiable causal structure learning method that can leverage perfect, imperfect and unknown-
target interventions (Section 4.3). We propose two instantiations, one of which is a universal
density approximator that relies on normalizing flows (Section 4.3.4).
• We show that the exact maximization of the proposed score will identify the I-Markov

equivalence class [Yang et al., 2018] of the ground truth graph (under regularity conditions)
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Figure 4.1. Different intervention types (shown in red). In imperfect interventions, the causal
relationships are altered. In perfect interventions, the targeted node is cut out from its parents.

for both the known- and unknown-target settings (Thm. 4.1 in Section 4.3.1 & Thm. 4.2 in
Section 4.3.3, respectively).
• We provide an extensive comparison of DCDI to state-of-the-art methods in a wide variety

of conditions, including multiple functional forms and types of interventions (Section 4.4).

4.2. Background and related work

4.2.1. Definitions

Causal graphical models. A CGM is defined by a distribution Px over a random vector x =
(x1, · · · ,xd) and a DAG G = (V,E). Each node i ∈ V = {1, · · · d} is associated with a random
variable xi and each edge (i, j) ∈ E represents a direct causal relation from variable xi to xj . The
distribution Px is Markov to the graph G, which means that the joint distribution can be factorized
as

p(x1, · · · ,xd) =
d∏

j=1

pj(xj|xπG
j
) , (4.1)

where πG
j is the set of parents of the node j in the graph G, and xB , for a subset B ⊆ V , denotes the

entries of the vector x with indices in B. In this work, we assume causal sufficiency, i.e., there is no
hidden common cause that is causing more than one variable in x Peters et al. [2017].
Interventions. In contrast with standard Bayesian Networks, CGMs support interventions. Formally,
an intervention on a variable xj corresponds to replacing its conditional pj(xj|xπG

j
) by a new

conditional p̃j(xj|xπG
j
) in Equation (4.1), thus modifying the distribution only locally. Interventions

can be performed on multiple variables simultaneously and we call the interventional target the
set I ⊆ V of such variables. When considering more than one intervention, we denote the
interventional target of the kth intervention by Ik. Throughout this paper, we assume that the
observational distribution (the original distribution without interventions) is observed, and denote it
by I1 := ∅. We define the interventional family by I := (I1, · · · , IK), where K is the number of
interventions (including the observational setting). Finally, the kth interventional joint density is

p(k)(x1, · · · ,xd) :=
∏
j /∈Ik

p
(1)
j (xj|xπG

j
)
∏
j∈Ik

p
(k)
j (xj|xπG

j
) , (4.2)
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where the assumption of causal sufficiency is implicit to this definition of interventions.
Type of interventions. The general type of interventions described in (4.2) are called imperfect
(or soft, parametric) Peters et al. [2017], Eaton and Murphy [2007], Eberhardt [2007]. A specific
case that is often considered is (stochastic) perfect interventions (or hard, structural) Eberhardt
and Scheines [2007], Yang et al. [2018], Korb et al. [2004] where p(k)

j (xj|xπG
j
) = p

(k)
j (xj) for

all j ∈ Ik, thus removing the dependencies with their parents (see Figure 4.1). Real-world
examples of these types of interventions include gene knockout/knockdown in biology. Analogous
to a perfect intervention, a gene knockout completely suppresses the expression of one gene and
removes dependencies to regulators of gene expression. In contrast, a gene knockdown hinders the
expression of one gene without removing dependencies with regulators [Zimmer et al., 2019], and
is thus an imperfect intervention.

4.2.2. Causal structure learning

In causal structure learning, the goal is to recover the causal DAG G using samples from Px and,
when available, from interventional distributions. This problem presents two main challenges: 1)
the size of the search space is super-exponential in the number of nodes [Chickering, 2003] and 2)
the true DAG is not always identifiable (more severe without interventional data). Methods for this
task are often divided into three groups: constraint-based, score-based, and hybrid methods. We
briefly review these below.

Constraint-based methods typically rely on conditional independence testing to identify edges
in G. The PC algorithm [Spirtes et al., 2000] is a classical example that works with observational
data. It performs conditional independence tests with a conditioning set that increases at each step of
the algorithm and finds an equivalence class that satisfies all independencies. Methods that support
interventional data include COmbINE [Triantafillou and Tsamardinos, 2015], HEJ [Hyttinen et al.,
2014], which both rely on Boolean satisfiability solvers to find a graph that satisfies all constraints;
and Kocaoglu et al. [2019], which proposes an algorithm inspired by FCI Spirtes et al. [2000]. In
contrast with our method, these methods account for latent confounders. The Joint causal inference

framework (JCI) Mooij et al. [2020] supports latent confounders and can deal with interventions
with unknown targets. This framework can be used with various observational constraint-based
algorithms such as PC or FCI. Another type of constraint-based method exploits the invariance of
causal mechanisms across interventional distributions, e.g., ICP [Peters et al., 2016, Heinze-Deml
et al., 2018b]. As will later be presented in Section 4.3, our loss function also accounts for such
invariances.
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Score-based methods formulate the problem of estimating the ground truth DAG G∗ by
optimizing a score function S over the space of DAGs. The estimated DAG Ĝ is given by

Ĝ ∈ arg max
G∈DAG

S(G) . (4.3)

A typical choice of score in the purely observational setting is the regularized maximum likelihood:

S(G) := max
θ

Ex∼Px log fθ(x)− λ|G| , (4.4)

where fθ is a density function parameterized by θ, |G| is the number of edges in G and λ is a positive
scalar.1 Since the space of DAGs is super-exponential in the number of nodes, these methods
often rely on greedy combinatorial search algorithms. A typical example is GIES [Hauser and
Bühlmann, 2012], an adaptation of GES [Chickering, 2003] to perfect interventions. In contrast
with our method, GIES assumes a linear gaussian model and optimizes the Bayesian information
criterion (BIC) over the space of I-Markov equivalence classes (see Definition 4.3 in Appendix A.1).
CAM [Bühlmann et al., 2014] is also a score-based method using greedy search, but it is nonlinear:
it assumes an additive noise model where the nonlinear functions are additive. In the original paper,
CAM only addresses the observational case where additive noise models are identifiable, however
code is available to support perfect interventions.

Hybrid methods combine constraint and score-based approaches. Among these, IGSP [Wang
et al., 2017, Yang et al., 2018] is a method that optimizes a score based on conditional independence
tests. Contrary to GIES, this method has been shown to be consistent under the faithfulness
assumption. Furthermore, this method has recently been extended to support interventions with
unknown targets (UT-IGSP) [Squires et al., 2020], which are also supported by our method.

4.2.3. Continuous constrained optimization for structure learning

A new line of research initiated by Zheng et al. [2018], which serves as the basis for our work,
reformulates the combinatorial problem of finding the optimal DAG as a continuous constrained-
optimization problem, effectively avoiding the combinatorial search. Analogous to standard score-
based approaches, these methods rely on a model fθ parametrized by θ, though θ also encodes the
graph G. Central to this class of methods are both the use a weighted adjacency matrix Aθ ∈ Rd×d

≥0

(which depends on the parameters of the model) and the acyclicity constraint introduced by Zheng
et al. [2018] in the context of linear models:

Tr eAθ − d = 0 . (4.5)

1This turns into the BIC score when the expectation is estimated with n samples, the model has one parameter per edge
(like in linear models) and λ = log n

2n [Peters et al., 2017, Section 7.2.2].
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The weighted adjacency matrix encodes the DAG estimator Ĝ as (Aθ)ij > 0 ⇐⇒ i → j ∈ Ĝ.
Zheng et al. [2018] showed, in the context of linear models, that Ĝ is acyclic if and only if the
constraint Tr eAθ − d = 0 is satisfied. The general optimization problem is then

max
θ

Ex∼Px log fθ(x)− λΩ(θ) s.t. Tr eAθ − d = 0 , (4.6)

where Ω(θ) is a regularizing term penalizing the number of edges in Ĝ. This problem is then
approximately solved using an augmented Lagrangian procedure, as proposed by Zheng et al. [2018].
Note that the problem in Equation (4.6) is very similar to the one resulting from Equations (4.3)
and (4.4).

Continuous-constrained methods differ in their choice of model, weighted adjacency matrix, and
the specifics of their optimization procedures. For instance, NOTEARS [Zheng et al., 2018] assumes
a Gaussian linear model with equal variances where θ := W ∈ Rd×d is the matrix of regression
coefficients, Ω(θ) := ||W ||1 and Aθ := W ⊙W is the weighted adjacency matrix. Several
other methods use neural networks to model nonlinear relations via fθ and have been shown to be
competitive with classical methods [Lachapelle et al., 2020, Zheng et al., 2020]. In some methods,
the parameter θ can be partitioned into θ1 and θ2 such that fθ = fθ1 and Aθ = Aθ2 [Kalainathan
et al., 2018, Ng et al., 2019, Ke et al., 2019] while in others, such a decoupling is not possible,
i.e., the adjacency matrix Aθ is a function of the neural networks parameters [Lachapelle et al.,
2020, Zheng et al., 2020]. In terms of scoring, most methods rely on maximum likelihood or
variants like implicit maximum likelihood [Kalainathan et al., 2018] and evidence lower bound [Yu
et al., 2019a]. Zhu and Chen [2020] also rely on the acyclicity constraint, but use reinforcement
learning as a search strategy to estimate the DAG. Ke et al. [2019] learn a DAG from interventional
data by optimizing an unconstrained objective with a regularization term inspired by the acyclicity
constraint, but that penalizes only cycles of length two. However, their work is limited to discrete
distributions and single-node interventions. To the best of our knowledge, no work has investigated,
in a general manner, the use of continuous-constrained approaches in the context of interventions as
we present in the next section.

4.3. DCDI: Differentiable causal discovery from interventional
data

In this section, we present a score for imperfect interventions, provide a theorem showing its
validity, and show how it can be maximized using the continuous-constrained approach to structure
learning. We also provide a theoretically grounded extension to interventions with unknown targets.
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4.3.1. A score for imperfect interventions

The model we consider uses neural networks to model conditional densities. Moreover, we
encode the DAG G with a binary adjacency matrix MG ∈ {0, 1}d×d which acts as a mask on the
neural networks inputs. We similarly encode the interventional family I with a binary matrixRI ∈
{0, 1}K×d, whereRI

kj = 1 means that xj is a target in Ik. In line with the definition of interventions
in Equation (4.2), we model the joint density of the kth intervention by

f (k)(x;MG,RI ,ϕ) :=
d∏

j=1

f̃(xj; NN(MG
j ⊙ x;ϕ(1)

j ))1−RI
kj f̃(xj; NN(MG

j ⊙ x;ϕ(k)
j ))RI

kj , (4.7)

where ϕ := {ϕ(1), · · · ,ϕ(K)}, the NN’s are neural networks parameterized by ϕ(1)
j or ϕ(k)

j , the
operator ⊙ denotes the Hadamard product (element-wise) andMG

j denotes the jth column ofMG ,
which enables selecting the parents of node j in the graph G. The neural networks output the
parameters of a density function f̃ , which in principle, could be any density. We experiment with
Gaussian distributions and more expressive normalizing flows (see Section 4.3.4).

We denote G∗ and I∗ := (I∗
1 , ..., I

∗
K) to be the ground truth causal DAG and ground truth

interventional family, respectively. In this section, we assume that I∗ is known, but we will relax
this assumption in Section 4.3.3. We propose maximizing with respect to G the following regularized
maximum log-likelihood score:

SI∗(G) := sup
ϕ

K∑
k=1

Ex∼p(k) log f (k)(x;MG,RI∗
,ϕ)− λ|G| , (4.8)

where p(k) stands for the kth ground truth interventional distribution from which the data is sampled.
A careful inspection of (4.7) reveals that the conditionals of the model are invariant across interven-
tions in which they are not targeted. Intuitively, this means that maximizing (4.8) will favor graphs
G in which a conditional p(xj|xπG

j
) is invariant across all interventional distributions in which xj is

not a target, i.e., j ̸∈ I∗
k . This is a fundamental property of causal graphical models.

We now present our first theoretical result (see Appendix A.2 for the proof). This theorem
states that, under appropriate assumptions, maximizing SI∗(G) yields an estimated DAG Ĝ that is
I∗-Markov equivalent to the true DAG G∗. We use the notion of I∗-Markov equivalence introduced
by Yang et al. [2018] and recall its meaning in Definition 4.3 of Appendix A.1. Briefly, the I∗-
Markov equivalence class of G∗ is a set of DAGs which are indistinguishable from G∗ given the
interventional targets in I∗. This means identifying the I∗-Markov equivalence class of G∗ is the
best one can hope for given the interventions I∗ without making further distributional assumptions.

Theorem 4.1 (Identification via score maximization). Suppose the interventional family I∗ is such

that I∗
1 := ∅. Let G∗ be the ground truth DAG and Ĝ ∈ arg maxG∈DAG SI∗(G). Assume that the
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density model has enough capacity to represent the ground truth distributions, that I∗-faithfulness

holds, that the density model is strictly positive and that the ground truth densities p(k) have finite

differential entropy, respectively Assumptions 4.1, 4.2, 4.3 & 4.4 (see Appendix A.2 for precise

statements). Then for λ > 0 small enough, we have that Ĝ is I∗-Markov equivalent to G∗.

Proof idea. Using the graphical characterization of I-Markov equivalence from Yang et al.
[2018], we verify that every graph outside the equivalence class has a lower score than that of the
ground truth graph. We show this by noticing that any such graph will either have more edges than
G∗ or limit the distributions expressible by the model in such a way as to prevent it from properly
fitting the ground truth. Moreover, the coefficient λ must be chosen small enough to avoid too
sparse solutions. □
I∗-faithfulness (Assumption 4.2) enforces two conditions. The first one is the usual faithfulness

condition, i.e., whenever a conditional independence statement holds in the observational distribu-
tion, the corresponding d-separation holds in G∗. The second one requires that the interventions are
non-pathological in the sense that every variable that can be potentially affected by the intervention
are indeed affected. See Appendix A.2 for more details and examples of I∗-faithfulness violations.

To interpret this result, note that the I∗-Markov equivalence class of G∗ tends to get smaller
as we add interventional targets to the interventional family I∗. As an example, when I∗ =
(∅, {1}, · · · , {d}), i.e., when each node is individually targeted by an intervention, G∗ is alone
in its equivalence class and, if assumptions of Theorem 4.1 hold, Ĝ = G∗. See Corollary 4.1 in
Appendix A.1 for details.

Perfect interventions. The score SI∗(G) can be specialized for perfect interventions, i.e., where
the targeted nodes are completely disconnected from their parents. The idea is to leverage the fact
that the conditionals targeted by the intervention in Equation (4.7) should not depend on the graph G
anymore. This means that these terms can be removed without affecting the maximization w.r.t. G.
We use this version of the score when experimenting with perfect interventions and present it in
Appendix A.4.

4.3.2. A continuous-constrained formulation

To allow for gradient-based stochastic optimization, we follow Kalainathan et al. [2018], Ng
et al. [2019] and treat the adjacency matrixMG as random, where the entriesMG

ij are independent
Bernoulli variables with success probability σ(αij) (σ is the sigmoid function) and αij is a scalar
parameter. We group these αij’s into a matrix Λ ∈ Rd×d. We then replace the score SI∗(G) (4.8)
with the following relaxation:

ŜI∗(Λ) := sup
ϕ

E
M∼σ(Λ)

[
K∑

k=1
E

x∼p(k)
log f (k)(x;M ,RI∗

,ϕ)− λ||M ||0

]
, (4.9)
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where we dropped the G superscript in M to lighten notation. This score tends asymptotically
to SI∗(G) as σ(Λ) progressively concentrates its mass on G.2 While the expectation of the log-
likelihood term is intractable, the expectation of the regularizing term simply evaluates to λ||σ(Λ)||1.
This score can then be maximized under the acyclicity constraint presented in Section 4.2.3:

sup
Λ
ŜI∗(Λ) s.t. Tr eσ(Λ) − d = 0 . (4.10)

This problem presents two main challenges: it is a constrained problem and it contains intractable
expectations. As proposed by Zheng et al. [2018], we rely on the augmented Lagrangian procedure
to optimize ϕ and Λ jointly under the acyclicity constraint. This procedure transforms the con-
strained problem into a sequence of unconstrained subproblems which can themselves be optimized
via a standard stochastic gradient descent algorithm for neural networks such as RMSprop. The
procedure should converge to a stationary point of the original constrained problem (which is not
necessarily the global optimum due to the non-convexity of the problem). In Appendix B.3, we
give details on the augmented Lagrangian procedure and show the learning process in details with a
concrete example.

The gradient of the likelihood part of ŜI∗(Λ) w.r.t. Λ is estimated using the Straight-Through
Gumbel estimator. This amounts to using Bernoulli samples in the forward pass and Gumbel-
Softmax samples in the backward pass which can be differentiated w.r.t. Λ via the reparametrization
trick Jang et al. [2017], Maddison et al. [2017]. This approach was already shown to give good
results in the context of continuous optimization for causal discovery in the purely observational
case Ng et al. [2019], Kalainathan et al. [2018]. We emphasize that our approach belongs to the
general framework presented in Section 4.2.3 where the global parameter θ is {ϕ,Λ}, the weighted
adjacency matrixAθ is σ(Λ) and the regularizing term Ω(θ) is ||σ(Λ)||1.

4.3.3. Interventions with unknown targets

Until now, we have assumed that the ground truth interventional family I∗ is known. We now
consider the case were it is unknown and, thus, needs to be learned. To do so, we propose a simple
modification of score (4.8) which consists in adding regularization to favor sparse interventional
families.

S(G, I) := sup
ϕ

K∑
k=1

Ex∼p(k) log f (k)(x;MG,RI ,ϕ)− λ|G| − λR|I| , (4.11)

where |I| =
∑K

k=1 |Ik|. The following theorem, proved in Appendix A.3, extends Theorem 4.1
by showing that, under the same assumptions, maximizing S(G, I) with respect to both G and I
recovers both the I∗-Markov equivalence class of G∗ and the ground truth interventional family I∗.

2In practice, we observe that σ(Λ) tends to become deterministic as we optimize.
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Theorem 4.2 (Unknown targets identification). Suppose I∗ is such that I∗
1 := ∅. Let G∗ be

the ground truth DAG and (Ĝ, Î) ∈ arg maxG∈DAG,I S(G, I). Under the same assumptions as

Theorem 4.1 and for λ, λR > 0 small enough, Ĝ is I∗-Markov equivalent to G∗ and Î = I∗.

Proof idea. We simply append a few steps at the beginning of the proof of Theorem 4.1 which
show that whenever I ≠ I∗, the resulting score is worse than S(G∗, I∗), and hence is not optimal.
This is done using arguments very similar to Theorem 4.1 and choosing λ and λR small enough. □

Theorem 4.2 informs us that ignoring which nodes are targeted during interventions does not
affect identifiability. However, this result assumes implicitly that the learner knows which data set
is the observational one.

Similarly to the development of Section 4.3.2, the score S(G, I) can be relaxed by treating
entries of MG and RI as independent Bernoulli random variables parameterized by σ(αij) and
σ(βkj), respectively. We thus introduced a new learnable parameter β. The resulting relaxed score is
similar to (4.9), but the expectation is taken w.r.t. toM andR. Similarly to Λ, the Straight-Through
Gumbel estimator is used to estimate the gradient of the score w.r.t. the parameters βkj . For perfect
interventions, we adapt this score by masking all inputs of the neural networks under interventions.

The related work of Ke et al. [2019], which also support unknown targets, bears similarity to
DCDI but addresses a different setting in which interventions are obtained sequentially in an online
fashion. One important difference is that their method attempts to identify the single node that has
been intervened upon (as a hard prediction), whereas DCDI learns a distribution over all potential
interventional families via the continuous parameters σ(βkj), which typically becomes deterministic
at convergence. Ke et al. [2019] also use random masks to encode the graph structure but estimates
the gradient w.r.t. their distribution parameters using the log-trick which is known to have high
variance Rezende et al. [2014] compared to reparameterized gradient Maddison et al. [2017].

4.3.4. DCDI with normalizing flows

In this section, we describe how the scores presented in Sections 4.3.2 & 4.3.3 can accommodate
powerful density approximators. In the purely observational setting, very expressive models
usually hinder identifiability, but this problem vanishes when enough interventions are available.
There are many possibilities when it comes to the choice of the density function f̃ . In this paper,
we experimented with simple Gaussian distributions as well as normalizing flows [Rezende and
Mohamed, 2015] which can represent complex causal relationships, e.g., multi-modal distributions
that can occur in the presence of latent variables that are parent of only one variable.

A normalizing flow τ (·;ω) is an invertible function (e.g., a neural network) parameterized by ω
with a tractable Jacobian, which can be used to model complex densities by transforming a simple
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random variable via the change of variable formula:

f̃(z;ω) :=
∣∣∣∣det

(
∂τ (z;ω)

∂z

)∣∣∣∣ p(τ (z;ω)) , (4.12)

where ∂τ (z;ω)
∂z

is the Jacobian matrix of τ (·;ω) and p(·) is a simple density function, e.g., a Gaussian.
The function f̃(·;ω) can be plugged directly into the scores presented earlier by letting the neural
networks NN(·;ϕ(k)

j ) output the parameter ωj of the normalizing flow τj for each variable xj . In
our implementation, we use deep sigmoidal flows (DSF), a specific instantiation of normalizing
flows which is a universal density approximator Huang et al. [2018b]. Details about DSF are relayed
to Appendix B.2.

4.4. Experiments
We tested DCDI with Gaussian densities (DCDI-G) and with normalizing flows (DCDI-DSF)

on a real-world data set and several synthetic data sets. The real-world task is a flow cytometry
data set from Sachs et al. [2005]. Our results, reported in Appendix C.1, show that our approach
performs comparably to state-of-the-art methods. In this section, we focus on synthetic data sets,
since these allow for a more systematic comparison of methods against various factors of variation
(type of interventions, graph size, density, type of mechanisms).

We consider synthetic data sets with three interventional settings: perfect/known, imperfect/-
known, and perfect/unknown. Each data set has one of the three different types of causal mechanisms:
i) linear Squires et al. [2020], ii) nonlinear additive noise model (ANM) Bühlmann et al. [2014],
and iii) nonlinear with non-additive noise using neural networks (NN) Kalainathan et al. [2018].
For each data set type, graphs vary in size (d = 10 or 20) and density (e = 1 or 4 where e · d is the
average number of edges). For conciseness, we present results for 20-node graphs in the main text
and report results on 10-node graphs in Appendix C.7; conclusions are similar for all sizes. For
each condition, ten graphs are sampled with their causal mechanisms and then observational and
interventional data are generated. Each data set has 10 000 samples uniformly distributed in the
different interventional settings. A total of d interventions were performed, each by sampling up
to 0.1d target nodes. For more details on the generation process, see Appendix B.1.

Most methods have an hyperparameter controlling DAG sparsity. Although performance is
sensitive to this hyperparameter, many papers do not specify how it was selected. For score-
based methods (GIES, CAM and DCDI), we select it by maximizing the held-out likelihood as
explained in Appendix B.5 (without using the ground truth DAG). In contrast, since constraint-based
methods (IGSP, UT-IGSP, JCI-PC) do not yield a likelihood model to evaluate on held-out data,
we use a fixed cutoff parameter (α = 1e−3) that leads to good results. We report additional
results with different cutoff values in Appendix C.7. For IGSP and UT-IGSP, we always use the
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independence test well tailored to the data set type: partial correlation test for Gaussian linear data
and KCI-test [Zhang et al., 2011] for nonlinear data.

The performance of each method is assessed by two metrics comparing the estimated graph to
the ground truth graph: i) the structural Hamming distance (SHD) which is simply the number of
edges that differ between two DAGs (either reversed, missing or superfluous) and ii) the structural

interventional distance (SID) which assesses how two DAGs differ with respect to their causal
inference statements [Peters and Bühlmann, 2015]. In Appendix C.6, we also report how well
the graph can be used to predict the effect of unseen interventions Gentzel et al. [2019]. Our
implementation is available here and additional information about the baseline methods is provided
in Appendix B.4.

4.4.1. Results for different intervention types

Perfect interventions. We compare our methods to GIES [Hauser and Bühlmann, 2012], a
modified version of CAM [Bühlmann et al., 2014] that support interventions and IGSP [Wang
et al., 2017]. The conditionals of targeted nodes were replaced by the marginal N (2, 1) similarly
to Hauser and Bühlmann [2012], Squires et al. [2020]. Boxplots for SHD and SID over 10 graphs
are shown in Figure 4.2. For all conditions, DCDI-G and DCDI-DSF shows competitive results in
term of SHD and SID. For graphs with a higher number of average edges, DCDI-G and DCDI-DSF
outperform all methods. GIES often shows the best performance for the linear data set, which is not
surprising given that it makes the right assumptions, i.e., linear functions with Gaussian noise.

Imperfect interventions. Our conclusions are similar to the perfect intervention setting. As
shown in Figure 4.3, DCDI-G and DCDI-DSF show competitive results and outperform other
methods for graphs with a higher connectivity. The nature of the imperfect interventions are
explained in Appendix B.1.

Perfect unknown interventions. We compare to UT-IGSP [Squires et al., 2020], an extension of
IGSP that deal with unknown interventions. The data used are the same as in the perfect intervention
setting, but the intervention targets are hidden. Results are shown in Figure 4.4. Except for linear
data sets with sparse graphs, DCDI-G and DCDI-DSF show an overall better performance than
UT-IGSP.

Summary. For all intervention settings, DCDI has overall the best performance. In Appen-
dix C.5, we show similar results for different types of perfect/imperfect interventions. While the
advantage of DCDI-DSF over DCDI-G is marginal, it might be explained by the fact that the
densities can be sufficiently well modeled by DCDI-G. In Appendix C.2, we show cases where
DCDI-G fails to detect the right causal direction due to its lack of capacity, whereas DCDI-DSF
systematically succeeds. In Appendix C.4, we present an ablation study confirming the advantage
of neural networks against linear models and the ability of our score to leverage interventional data.
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Figure 4.3. Imperfect interventions. SHD and SID for 20-node graphs
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Figure 4.4. Unknown interventions. SHD and SID for 20-node graphs

4.4.2. Scalability experiments

So far the experiments focused on moderate size data sets, both in terms of number of variables
(10 or 20) and number of examples (≈ 104). In Appendix C.3, we compare the running times of

91



DCDI to those of other methods on graphs of up to 100 nodes and on data sets of up to 1 million
examples.

The augmented Lagrangian procedure on which DCDI relies requires the computation of the
matrix exponential at each gradient step, which costs O(d3). We found this does not prevent
DCDI from being applied to 100 nodes graphs. Several constraint-based methods use kernel-based
conditional independence tests [Zhang et al., 2011, Fukumizu et al., 2008], which scale poorly with
the number of examples. For example, KCI-test scales in O(n3) [Strobl et al., 2019] and HSIC
in O(n2) [Zhang et al., 2018]. On the other hand, DCDI is not greatly affected by the sample
size since it relies on stochastic gradient descent which is known to scale well with the data set
size Bottou [2010]. Our comparison shows that, among all considered methods, DCDI is the only
one supporting nonlinear relationships that can scale to as much as one million examples. We
believe that this can open the way to new applications of causal discovery where data is abundant.

4.5. Conclusion
We proposed a general continuous-constrained method for causal discovery which can leverage

various types of interventional data as well as expressive neural architectures, such as normalizing
flows. This approach is rooted in a sound theoretical framework and is competitive with other
state-of-the-art algorithms on real and simulated data sets, both in terms of graph recovery and
scalability. This work opens interesting opportunities for future research. One direction is to extend
DCDI to time-series data, where non-stationarities can be modeled as unknown interventions Pfister
et al. [2019]. Another exciting direction is to learn representations of variables across multiple
systems that could serve as prior knowledge for causal discovery in low data settings.

Broader impact
Causal structure learning algorithms are general tools that address two high-level tasks: un-

derstanding and acting. That is, they can help a user understand a complex system and, once
such an understanding is achieved, they can help in recommending actions. We envision positive
impacts of our work in fields such as scientific investigation (e.g., interpreting and anticipating
the outcome of experiments), policy making for decision-makers (e.g., identifying actions that
could stimulate economic growth), and improving policies in autonomous agents (e.g., learning
causal relationships in the world via interaction). As a concrete example, consider the case of gene
knockouts/knockdowns experiments in the field of genomics, which aim to understand how specific
genes and diseases interact Zimmer et al. [2019]. Learning causal models using interventions
performed in this setting could help gain precious insight into gene pathways, which may catalyze
the development of better pharmaceutic targets and broaden our understanding of complex diseases
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such as cancer. Of course, applications are likely to extend beyond these examples which seem
natural from our current position.

Like any methodological contribution, our work is not immune to undesirable applications
that could have negative impacts. For instance, it would be possible, yet unethical for a policy-
maker to use our algorithm to understand how specific human-rights violations can reduce crime
and recommend their enforcement. The burden of using our work within ethical and benevolent
boundaries would rely on the user. Furthermore, even when used in a positive application, our
method could have unintended consequences if used without understanding its assumptions.

In order to use our method correctly, it is crucial to understand the assumptions that it makes
about the data. When such assumptions are not met, the results may still be valid, but should be
used as a support to decision rather than be considered as the absolute truth. These assumptions are:

• Causal sufficiency: there are no hidden confounding variables
• The samples for a given interventional distribution are independent and identically dis-

tributed
• The causal relationships form an acyclic graph (no feedback loops)
• Our theoretical results are valid in the infinite-data regime

We encourage users to be mindful of this and to carefully analyze their results before making
decisions that could have a significant downstream impact.
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Appendices of Chapter 4

A. Theory

A.1. Theoretical Foundations for Causal Discovery with Imperfect Interven-
tions

Before showing results about our regularized maximum likelihood score from Section 4.3.1,
we start by briefly presenting useful definitions and results from Yang et al. [2018]. We refer the
reader to the original paper for a more comprehensive introduction to these notions, examples, and
proofs. Throughout the appendix, we assume that the reader is comfortable with the concept of
d-separation and immorality in directed graphs. These notions are presented in any standard book
on probabilistic graphical models, e.g. Koller and Friedman [2009]. Recall that I := (I∗

1 , ..., IK)
and that we always assume I1 := ∅. Following the approach of Yang et al. [2018] and to simplify
the presentation, we consider only densities which are strictly positive everywhere throught this
appendix. We also note that while we present proofs for the cases where the distributions have
densities with respect to the Lebesgue measure, all our results also hold for discrete distributions
by simply replacing the Lebesgue measure with the counting measure in the integrals. We use
the notation i → j ∈ G to indicate that the edge (i, j) is in the edge set of G. Given disjoint
A,B,C ⊆ V , when C d-separates A from B in graph G, we write A ⊥⊥G B | C and when random
variables xA and xB are independent given xC in distribution f , we write xA ⊥⊥f xB | xC .

Definition 4.1. For a DAG G, letM(G) be the set of strictly positive densities f : Rd → R such

that

f(x1, · · · ,xd) =
∏

j

fj(xj | xπG
j
) , (4.13)

where
∫
R fj(xj | xπG

j
)dm(xj) = 1 for all xπG

j
∈ R|πG

j | and all j ∈ [d], where m is the Lebesgue

measure on R.

Next proposition is adapted from Lauritzen [1996, Theorem 3.27]. It relates the factorization
of (4.13) to d-separation statements.



Proposition 4.1. For a DAG G and a strictly positive density f ,3 we have f ∈M(G) if and only if

for any disjoint sets A,B,C ⊆ V we have

A ⊥⊥G B | C =⇒ xA ⊥⊥f xB | xC .

Definition 4.2. For a DAG G and an interventional family I, let

MI(G) := {(f (k))k∈[K] | ∀k ∈ [K], f (k) ∈M(G) and ∀j ̸∈ Ik, f
(k)
j (xj | xπG

j
) = f

(1)
j (xj | xπG

j
)} .

Definition 4.2 defines a set MI(G) which contains all the sets of distributions (f (k))k∈[K]

which are coherent with the definition of interventions provided at Equation (4.2).4 Note that the
assumption of causal sufficiency is implicit to this definition of interventions. Analogously to the
observational case, two different DAGs G1 and G2 can induce the same interventional distributions.

Definition 4.3 (I-Markov Equivalence Class). Two DAGs G1 and G2 are I-Markov equivalent iff

MI(G1) =MI(G2). We denote by I-MEC(G1) the set of all DAGs which are I-Markov equivalent

to G1, this is the I-Markov equivalence class of G1.

We now define an augmented graph containing exactly one node for each intervention k.

Definition 4.4. Given a DAG G and an interventional family I, the associated I-DAG, denoted

by GI , is the graph G augmented with nodes ζk and edges ζk → i for all k ∈ [K] \ {1} and all

i ∈ Ik.

In the observational case, we say that a distribution f has the Markov property w.r.t. a graph
G if whenever some d-separation holds in the graph, the corresponding conditional independence
holds in f . We now define the I-Markov property, which generalizes this idea to interventions. This
property is important since it holds in causal graphical models, as Proposition 4.2 states.

Definition 4.5 (I-Markov property). Let I be interventional family such that I1 := ∅ and (f (k))k∈[K]

be a family of strictly positive densities over x. We say that (f (k))k∈[K] satisfies the I-Markov

property w.r.t. the I-DAG GI iff

(1) For any disjoint A,B,C ⊆ V , A ⊥⊥G B|C implies xA ⊥⊥f (k) xB|xC for all k ∈ [K].
(2) For any disjoint A,C ⊆ V and k ∈ [K] \ {1},

A ⊥⊥GI ζk | C ∪ ζ−k implies f (k) (xA|xC) = f (1) (xA|xC), where ζ−k := ζ[K]\{1,k}.

The next proposition relates the definition of interventions with the I-Markov property that we
just defined.

Proposition 4.2. (Yang et al. [2018]) Suppose the interventional family I is such that I1 := ∅. Then

(f (k))k∈[K] ∈MI(G) iff (f (k))k∈[K] is I-Markov to GI .

The next theorem gives a graphical characterization of I-Markov equivalence classes, which
will be crucial in the proof of Theorem 4.1.

3Note that Proposition 4.1 holds even for distributions with densities which are not strictly positive.
4Yang et al. [2018] definesMI(G) slightly differently, but show their definition to be equivalent to the one used here.
See Lemma A.1 in Yang et al. [2018]
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Figure 4.5. Different I-DAGs with a single intervention. The first graph is alone in its I-Markov
equivalence class since reversing the 1 → 2 edge would break the immorality 1 → 2 ← ζ. The
second graph is also alone in its equivalence class since reversing 1 → 2 would create a new
immorality ζ → 1← 2. The third DAG is not alone in its equivalence class since reversing 1→ 2
would preserve the skeleton without adding or removing an immorality. It should become apparent
that adding more interventions will likely reduce the size of the I-Markov equivalence class by
introducing more immoralities.

Theorem 4.3. (Yang et al. [2018]) Suppose the interventional family I is such that I1 := ∅. Two

DAGs G1 and G2 are I-Markov equivalent iff their I-DAGs GI
1 and GI

2 share the same skeleton and

immoralities.

See Figure 4.5 for a simple illustration of this concept.
We now present a very simple corollary which gives a situation where the I-Markov equivalence

class contains a unique graph.

Corollary 4.1. Let G be a DAG and let I = (∅, {1}, · · · , {d}). Then G is alone in its I-Markov

equivalence class.

Proof. By Theorem 4.3, all I-Markov equivalent graphs will share its skeleton with G, so we
consider only graphs obtained by reversing edges in G.

Consider any edge i → j in G. We note that i → j ← ζj+1 forms an immorality in the
I-DAG GI . Reversing i → j would break this immorality which would imply that the resulting
DAG is not I-Markov equivalent to G, by Theorem 4.3. Hence, G is alone in its equivalence class.■

A.2. Proof of Theorem 4.1

We are now ready to present the main result of this section. We recall the score function
introduced in Section 4.3.1:

SI∗(G) := sup
ϕ

K∑
k=1

Ex∼p(k) log f (k)(x;MG,RI∗
,ϕ)− λ|G| , (4.14)

where

f (k)(x;MG,RI ,ϕ) :=
d∏

j=1

f̃(xj; NN(MG
j ⊙ x;ϕ(1)

j ))1−RI
kj f̃(xj; NN(MG

j ⊙ x;ϕ(k)
j ))RI

kj .

(4.15)
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Recall that (p(k))k∈[K] are the ground truth interventional distributions with ground truth graph G∗

and ground truth interventional family I∗. We will sometimes use the notation f (k)
GIϕ(x) to refer to

f (k)(x;MG,RI ,ϕ). We define FI(G) to be the set of all (f (k))k∈[K] which are expressible by the
model specified in Equation (4.15). More precisely,

FI(G) := {(f (k))k∈[K] | ∃ ϕ s.t. ∀ k ∈ [K] f (k) = f
(k)
GIϕ} . (4.16)

Theorem 4.1 relies on four assumptions. The first one requires that the model is expressive
enough to represent the ground truth distributions exactly.

Assumption 4.1 (Sufficient capacity). The ground truth interventional distributions P(k) all have

a density p(k) w.r.t. the Lebesgue measure on Rn such that (p(k))k∈[K] ∈ FI∗(G∗), i.e. the model

specified in Equation (4.15) is expressive enough to represent the ground truth distributions.

The second assumption is a generalization of faithfulness to interventions.

Assumption 4.2 (I∗-Faithfulness).
(1) For any disjoint A,B,C ⊆ V ,

A ⊥̸⊥ G∗B|C implies xA ⊥̸⊥ p(1)xB|xC .

(2) For any disjoint A,C ⊆ V and k ∈ [K],

A ⊥̸⊥ G∗I∗ζk | C ∪ ζ−k implies p(k) (xA|xC) ̸= p(1) (xA|xC) .

The first condition of Assumption 4.2 is exactly the standard faithfulness assumption for the
ground truth observational distribution. The second condition is simply the converse of the second
condition in the I-Markov property (Definition 4.5) and can be understood as avoiding pathological
interventions to make sure that every variables that can be potentially affected by the intervention
are indeed affected. The simplest case is when Ik := {j}, A := {j} and C := πG∗

j . In this case the
condition requires that the intervention actually change something. Another simple case is when
C := ∅. In this case, the condition requires that all descendants are affected, in the sense that their
marginals change.

As we just saw, a trivial violation of I∗-faithfulness would be when the intervention is not
changing anything, not even the targeted conditional. We now present a non-trivial violation of
I∗-faithfulness.

Example 4.1 (I∗-Faithfulness violation). Suppose G∗ is x1 → x2 where both variables are binary.

Assume p(1)(x1 = 1) = 1
2 , p(1)(x2 = 1 | x1 = 0) = 1

4 and p(1)(x2 = 1 | x1 = 1) = 3
4 . From this,

we can compute p(1)(x2 = 1) = 1
2 . Consider the intervention targeting only x2 which changes

its conditional to p(2)(x2 = 1 | x1 = 0) = 3
4 and p(2)(x2 = 1 | x1 = 1) = 1

4 . So the interventional

family is I∗ = (∅, {2}). A simple computation shows the new marginal on x2 has not changed, i.e.

p(2)(x2) = p(1)(x2). This is a violation of I∗-faithfulness since clearly x2 is not d-separated from

the interventional node ζ2 in G∗I∗
.
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The third assumption is a technicality to simplify the presentation of the proofs and to follow
the presentation of Yang et al. [2018]: we require the density model to be strictly positive.

Assumption 4.3 (Strict positivity). For all k ∈ [K], the model density f (k)(x;MG,RI ,ϕ) is

strictly positive for all ϕ, DAG G and interventional family I.

Note that Assumption 4.3 is satisfied for example when for all θ in the image of NN, the density
f̃(·;θ) is strictly positive. This happens when using a Gaussian density with variance strictly
positive or a deep sigmoidal flow.

From Equation (4.16) and Assumption 4.3, it should be clear that FI(G) ⊆ MI(G) (recall
MI(G) contains only strictly positive densities). Thus, from Proposition 4.2 we see that the
I-Markov property holds for all (f (k))k∈[K] ∈ FI(G). This fact will be useful in the proof of
Theorem 4.1.

The fourth assumption is purely technical. It requires the differential entropy of the densities
p(k) to be finite, which, as we will see in Lemma 4.1, ensures that the score of the ground truth
graph SI∗(G∗) is finite. This will be important to ensure that the score of any other graphs can be
compared to it. In particular, this is avoiding the hypothetical situation where SI∗(G∗) and SI∗(G)
are both equal to infinity, which means they cannot be easily compared without defining a specific
limiting process.

Assumption 4.4 (Finite differential entropies). For all k ∈ [K],

|Ep(k) log p(k)(x)| <∞ .

Lemma 4.1 (Finite scores). Under Assumptions 4.1 & 4.4, |SI∗(G∗)| <∞.

Proof. Consider the Kullback-Leibler divergence between p(k) and f (k)
G∗I∗ϕ for an arbitrary ϕ.

0 ≤ DKL(p(k)||f (k)
G∗I∗ϕ) = Ep(k) log p(k)(x)− Ep(k) log f (k)

G∗I∗ϕ(x) , (4.17)

where we applied the linearity of the expectation (which holds because |Ep(k) log p(k)(x)| < ∞).
We thus have that

Ep(k) log f (k)
G∗I∗ϕ(x) ≤ Ep(k) log p(k)(x) <∞ . (4.18)

Thus, supϕ Ep(k) log f (k)
G∗I∗ϕ(x) <∞, which implies SI∗(G∗) <∞.

By the assumption of sufficient capacity, there exists some ϕ∗ such that f (k)
G∗ϕ∗ = p(k) for all

k, hence supϕ
∑K

k=1 Ep(k) log f (k)
G∗I∗ϕ(x) ≥

∑K
k=1 Ep(k) log f (k)

G∗ϕ∗(x) =
∑K

k=1 Ep(k) log p(k)(x) >
−∞. This implies that SI∗(G∗) > −∞. ■

The next lemma shows that the difference SI∗(G∗)−SI∗(G) can be rewritten as a minimization
of a sum of KL divergences plus the difference in regularizing terms.
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Lemma 4.2 (Rewriting of score differences). Under Assumption 4.1 & 4.4, we have

SI∗(G∗)− SI∗(G) = inf
ϕ

∑
k∈[K]

DKL(p(k)||f (k)
GI∗ϕ) + λ(|G| − |G∗|) . (4.19)

Proof. By Lemma 4.1, we have that |SI∗(G∗)| <∞, which ensures the difference SI∗(G∗)−
SI∗(G) is well defined.

SI∗(G∗)− SI∗(G) (4.20)

= SI∗(G∗)−
∑

k∈[K]

Ep(k) log p(k)(x)− SI∗(G) +
∑

k∈[K]

Ep(k) log p(k)(x) (4.21)

= sup
ϕ

∑
k∈[K]

Ep(k) log f (k)
G∗I∗ϕ(x)−

∑
k∈[K]

Ep(k) log p(k)(x)

− sup
ϕ

∑
k∈[K]

Ep(k) log f (k)
GI∗ϕ(x) +

∑
k∈[K]

Ep(k) log p(k)(x)

+ λ(|G| − |G∗|) (4.22)

= inf
ϕ
−
∑

k∈[K]

Ep(k) log f (k)
GI∗ϕ(x) +

∑
k∈[K]

Ep(k) log p(k)(x)

− inf
ϕ
−
∑

k∈[K]

Ep(k) log f (k)
G∗I∗ϕ(x)−

∑
k∈[K]

Ep(k) log p(k)(x)

+ λ(|G| − |G∗|) (4.23)

= inf
ϕ

∑
k∈[K]

DKL(p(k)||f (k)
GI∗ϕ)− inf

ϕ

∑
k∈[K]

DKL(p(k)||f (k)
G∗I∗ϕ)

+ λ(|G| − |G∗|) (4.24)

The first equality holds since by Assumption 4.4 the differential entropy of p(k) is finite for all k.
In (4.24), we use the linearity of the expectation, which holds because the entropy term is finite. By
Assumption 4.1, (p(k))k∈[K] ∈ FI∗(G∗) which implies that infϕ

∑
k∈[K] DKL(p(k)||f (k)

G∗I∗ϕ) = 0.■
We will now prove three technical lemmas (Lemma 4.3, 4.4 & 4.5). Their proof can be safely

skipped during a first reading.
Lemma 4.3 is adapted from Koller and Friedman [2009, Theorem 8.7] to handle cases where

infinite differential entropies might arise.

Lemma 4.3. Let G be a DAG. If p ̸∈ M(G) and p(x) > 0 for all x ∈ Rd, then

inf
f∈M(G)

DKL(p||f) > 0 .
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Proof. We consider a new density function defined as

f̂(x) :=
d∏

j=1

p(xj | xπG
j
) , (4.25)

where

p(xj|xπG
j
) :=

p(xj,xπG
j
)

p(xπG
j
) , (4.26)

i.e. it is the conditional density. This should not be conflated with p(xj|xπG∗
j

). It should be clear

from (4.25) and the fact that p is strictly positive that f̂ ∈M(G) hence p ̸= f̂ . We will show that
f̂ ∈ arg minf∈M(G) DKL(p||f).

Pick an arbitrary f ∈ M(G). We first show that Ep log f̂(x)
f(x) can be written as a sum of KL

divergences.

Ep log f̂(x)
f(x) = Ep

d∑
j=1

log
p(xj|xπG

j
)

f(xj|xπG
j
) (4.27)

=
d∑

j=1

Ep log
p(xj|xπG

j
)

f(xj|xπG
j
) (4.28)

In Equation (4.28), we apply the linearity of the Lebesgue integral, which holds as long as we
are not summing infinities of opposite signs (in which case the sum is undefined).5 We now show
that it is not the case since each term is an expectation of a KL divergence, which is in [0,+∞]:

Ep log
p(xj|xπG

j
)

f(xj|xπG
j
) =

∫
p(xπG

j
)
∫
p(xj | xπG

j
) log

p(xj|xπG
j
)

f(xj|xπG
j
)dxjdxπG

j
(4.29)

=
∫
p(xπG

j
)DKL(p(·j | xπG

j
)||f(·j | xπG

j
))) . (4.30)

This implies that Ep log f̂(x)
f(x) ∈ [0,+∞]. We can now show that f̂ ∈ arg minf∈M(G) DKL(p||f):

5The linearity of the Lebesgue integral is typically stated for Lebesgue integrable functions f and g, i.e.
∫
|f |,

∫
|g| <∞.

See for example Billingsley [1995, Theorem 16.1]. However, it can be extended to cases where f and g are not integrable,
as long as

∫
f and

∫
g are well-defined and are not infinities of opposite sign (which would yield the undefined expression

∞−∞). The proof is a simple adaptation of Theorem 16.1 which makes use of Theorem 15.1 in Billingsley [1995].
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DKL(p||f) = Ep log p(x)
f̂(x)

f̂(x)
f(x) (4.31)

= Ep log p(x)
f̂(x)

+ Ep log f̂(x)
f(x) (4.32)

= DKL(p||f̂) + Ep log f̂(x)
f(x) (4.33)

≥ DKL(p||f̂) > 0 . (4.34)

Equation (4.32) holds as long as we do not have∞−∞. It is not the case here since (i) the first
term is a KL divergence, so it is in [0,+∞], and (ii) the second term was already shown to be in
[0,+∞]. The very last inequality holds because p ̸= f̂ .

We conclude by noting that inff∈M(G) DKL(p||f) = DKL(p||f̂) > 0. ■
The following lemma will make use of the following definition:

Z(j, A) := {(f (1), f (2)) | f (1)(xj | xA) = f (2)(xj | xA) and f (1), f (2) > 0} . (4.35)

Lemma 4.4. Let j ∈ V and A ⊆ V \{j}. If (p(1), p(2)) ̸∈ Z(j, A) and both p(1) and p(2) are strictly

positive, then

inf
(f (1),f (2))∈Z(j,A)

DKL(p(1)||f (1)) +DKL(p(2)||f (2)) > 0 .

Proof. The proof is very similar in spirit to the proof of Lemma 4.3.
We define new density functions:

pmid(x) := p(1)(x) + p(2)(x)
2 (4.36)

f̂ (k)(x) := p(k)(xA)pmid(xj | xA)p(k)(xV \A\j | xA∪j) ∀k ∈ {1, 2} . (4.37)

We note that pmid, f̂ (1) and f̂ (2) are strictly positive since p(1) and p(2) are strictly positive. By
construction, we have f̂ (1)(xj|xA) = f̂ (2)(xj|xA), and thus (f̂ (1), f̂ (2)) ∈ Z(i, A). This means that
f̂ (1) ̸= p(1) or f̂ (2) ̸= p(2).
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Pick an arbitrary (f (1), f (2)) ∈ Z(j, A). We start by showing that the integral∫
p(1)(x) log f̂ (1)(x)

f (1)(x) + p(2)(x) log f̂ (2)(x)
f (2)(x)dx is in [0,+∞].∫

p(1)(x) log f̂ (1)(x)
f (1)(x)

+ p(2)(x) log f̂ (2)(x)
f (2)(x)

dx (4.38)

=
∫

p(1)(x)
[

log p(1)(xA)
f (1)(xA)

+ log pmid(xj | xA)
f (1)(xj | xA)

+ log
p(1)(xV \A\j | xA∪j)
f (1)(xV \A\j | xA∪j)

]

+ p(2)(x)
[

log p(2)(xA)
f (2)(xA)

+ log pmid(xj | xA)
f (1)(xj | xA)

+ log
p(2)(xV \A\j | xA∪j)
f (2)(xV \A\j | xA∪j)

]
dx (4.39)

= DKL(p(1)(·A)||f (1)(·A)) + Ep(1)DKL(p(1)(·V \A\j | xA∪j)||f (1)(·V \A\j | xA∪j))

+ DKL(p(2)(·A)||f (2)(·A)) + Ep(2)DKL(p(2)(·V \A\j | xA∪j)||f (2)(·V \A\j | xA∪j))

+ 2
∫

p(1)(x) + p(2)(x)
2 log pmid(xj | xA)

f (1)(xj | xA)
dx︸ ︷︷ ︸

=E
pmid DKL(pmid(·j |xA)||f (1)(·j |xA))

. (4.40)

In (4.39), we used the fact that f (1)(xj | xA) = f (2)(xj | xA). In (4.40), we use the linearity of
the integral (which can be safely apply because each resulting “piece” is in [0,+∞]). Since each
term in (4.40) is in [0,+∞], their sum is in [0,+∞] as well.

We can now look at the sum of KL-divergences we are interested in.

DKL(p(1)||f (1)) + DKL(p(2)||f (2))

=
∫

p(1)(x) log p(1)

f (1) dx+
∫

p(2)(x) log p(2)

f (2) dx (4.41)

=
∫

p(1)(x) log p(1)

f (1) + p(2)(x) log p(2)

f (2) dx (4.42)

=
∫

p(1)(x) log p(1)(x)
f̂ (1)(x)

+ p(1)(x) log f̂ (1)(x)
f (1)(x)

+ p(2)(x) log p(2)(x)
f̂ (2)(x)

+ p(2)(x) log f̂ (2)(x)
f (2)(x)

dx (4.43)

= DKL(p(1)||f̂ (1)) + DKL(p(2)||f̂ (2)) +
∫

p(1)(x) log f̂ (1)(x)
f (1)(x)

+ p(2)(x) log f̂ (2)(x)
f (2)(x)

dx (4.44)

≥ DKL(p(1)||f̂ (1)) + DKL(p(2)||f̂ (2)) > 0 . (4.45)

In (4.42), we use the linearity of the integral (which can be safely applied given the initial integrals
were in [0,+∞]). In (4.44), we again use the linearity of the integral (which is, again, possible
because each resulting piece are in [0,+∞]). In (4.45), we use the fact that

∫
p(1)(x) log f̂ (1)(x)

f (1)(x) +
p(2)(x) log f̂ (2)(x)

f (2)(x)dx ∈ [0,+∞] to get the ≥ while the strict inequality holds because either f̂ (1) ̸=
p(1) or f̂ (k) ̸= p(k).

This implies that

inf
(f (1),f (2))∈Z(j,A)

DKL(p(1)||f (1)) +DKL(p(2)||f (2)) = DKL(p(1)||f̂ (1)) +DKL(p(2)||f̂ (2)) > 0 .■
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The following definition will be useful for the next lemma.

Definition 4.6. Given a DAG G with node set V and two nodes i, j ∈ V , we define the following

sets:

T G
ij := {ℓ ∈ V | the immorality i→ ℓ← j is in G} (4.46)

LG
ij := DEG(T G

ij) ∪ {i, j} , (4.47)

where DEG(S) is the set of descendants of S in G, including S itself.

Lemma 4.5. Let G be a DAG with node set V . When i→ j ̸∈ G and i← j ̸∈ G we have

i ⊥⊥G j | V \ LG
ij . (4.48)

Proof: By contradiction. Suppose there is a path from (i = a0, a1, ..., ap = j) with p > 1 which
is not d-blocked by V \ LG

ij in G. We first consider the case where the path contains no colliders.
If the path contains no colliders, then a0 ← a1 or ap−1 → ap. Moreover, since the path is not

d-blocked and both a1 and ap−1 are not colliders, a1, ap−1 ∈ LG
ij . But this implies that there is a

directed path from i = a0 to a1 and a directed path from j = ap to ap−1. This creates a directed
cycle: either a0 → · · · → a1 → a0 or ap → · · · → ap−1 → ap. This is a contradiction since G is
acyclic.

Suppose there is a collider ak, i.e. ak−1 → ak ← ak+1. Since the path is not d-blocked, there
must exists a node z ∈ DEG(ak) ∪ {ak} such that z ̸∈ LG

ij . If i = ak−1 and j = ak+1, then clearly
z ∈ LG

ij , which is a contradiction. Otherwise, i ̸= ak−1 or j ̸= ak+1. Without loss of generality,
assume i ̸= ak−1. Clearly, ak−1 is not a collider and since the path is not d-blocked, ak−1 ∈ LG

ij . But
by definition, LG

ij also contains all the descendants of ak−1 including z. Again, this is a contradiction
with z ̸∈ LG

ij . ■
We recall Theorem 1 from Section 4.3.1 and present its proof.

Theorem 4.1 (Identification via score maximization). Suppose the interventional family I∗ is such

that I∗
1 := ∅. Let G∗ be the ground truth DAG and Ĝ ∈ arg maxG∈DAG SI∗(G). Assume that the

density model has enough capacity to represent the ground truth distributions, that I∗-faithfulness

holds, that the density model is strictly positive and that the ground truth densities p(k) have finite

differential entropy, respectively Assumptions 4.1, 4.2, 4.3 & 4.4. Then for λ > 0 small enough, we

have that Ĝ is I∗-Markov equivalent to G∗.

Proof. It is sufficient to prove that, for all G ̸∈ I∗-MEC(G∗), SI∗(G∗) > SI∗(G). We use
Theorem 4.3 which states that Ĝ is not I∗-Markov equivalent to G∗ if and only if ĜI∗ does not share
its skeleton or its immoralities with G∗I∗ . The proof is organized in six cases. Cases 1-2 treat when
G and G∗ do not share the same skeleton, cases 3 & 4 when their immoralities differ and cases 5 &
6 when their immoralities implying interventional nodes ζk differ. In almost every cases, the idea is
the same:
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(1) Use Lemma 4.5 to find a d-separation which holds in GI∗ and show it does not hold in G∗I∗ ;
(2) Use the fact that FI(G) ⊆ MI(G) (by strict positivity), Proposition 4.2 and the
I∗-faithfulness assumption to obtain an invariance which holds for all (f (k))k∈[K] ∈ FI∗(G)
but not in (p(k))k∈[K];

(3) Use the fact that the invariance forces infϕ
∑

k∈[K] DKL(p(k)||f (k)
GI∗ϕ) to be greater than

zero (by Lemma 4.3 or 4.4) and;
(4) Conclude that SI∗(G∗) > SI∗(G) via Lemma 4.2.
In this proof, we are exclusively referring to I∗. Thus for notational convenience, we set

I := I∗.
Case 1: We consider the graphs G such that there exists i → j ∈ G∗ but i→ j ̸∈ G and

i← j ̸∈ G. Let G be the set of all such G. By Lemma 4.5, i ⊥⊥G j | V \ LG
ij but clearly

i ⊥̸⊥ G∗j | V \ LG
ij . Hence, by I-faithfulness (Assumption 4.2) we have xi ⊥̸⊥ p(1)xj|xV \LG

ij
. It

implies that p(1) ̸∈ M(G), by Proposition 4.1.
For notation convenience, let us define

η(G) := inf
ϕ

∑
k∈[K]

DKL(p(k)||f (k)
GIϕ) . (4.49)

Note that

η(G) ≥ inf
ϕ
DKL(p(1)||f (1)

GIϕ) ≥ inf
f∈M(G)

DKL(p(1)||f) > 0 , (4.50)

where the first inequality holds by non-negativity of the KL divergence, the second holds because, for
all ϕ, f (1)

GIϕ ∈M(G) and the third holds by Lemma 4.3 (which applies here because p(1) ̸∈ M(G)).
Using Lemma 4.2, we can write

SI(G∗)− SI(G) = η(G) + λ(|G| − |G∗|) . (4.51)

If |G| ≥ |G∗| then clearly SI(G∗) − SI(G) > 0. Let G+ := {G ∈ G | |G| < |G∗|}. To make sure
we have SI(G∗) − SI(G) > 0 for all G ∈ G+, we need to pick λ sufficiently small. Choosing
0 < λ < minG∈G+

η(G)
|G∗|−|G| is sufficient since (and note that minimum exists because the set G+ is

finite and is strictly positive by (4.50)):

λ < min
G∈G+

η(G)
|G∗| − |G|

(4.52)

⇐⇒ λ <
η(G)

|G∗| − |G|
∀G ∈ G+ (4.53)

⇐⇒ λ(|G∗| − |G|) < η(G) ∀G ∈ G+ (4.54)

⇐⇒ 0 < η(G) + λ(|G| − |G∗|) = SI(G∗)− SI(G) ∀G ∈ G+ . (4.55)
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Case 2: We consider the graphs G such that there exists i → j ∈ G but i→ j ̸∈ G∗ and
i← j ̸∈ G∗. We can assume k → ℓ ∈ G∗ implies k → ℓ ∈ G or k ← ℓ ∈ G, since otherwise we are
in Case 1. Hence, it means |G| > |G∗| which in turn implies that SI(G∗) > SI(G).

Cases 1 and 2 completely cover the situations where GI and G∗I do not share the same skeleton.
Next, we assume that GI and G∗I do have the same skeleton (which implies that |G| = |G∗|). The
remaining cases treat the differences in immoralities.

Case 3: Suppose G∗ contains an immorality i→ ℓ← j which is not present in G. We first show
that ℓ ̸∈ LG

ij . Suppose the opposite. This means ℓ is a descendant of both i and j in G. Since G and
G∗ share skeleton and because i → ℓ ← j is not an immorality in G, we have that i ← ℓ ∈ G or
ℓ→ j ∈ G, which in both cases creates a cycle. This is a contradiction.

The path (i, ℓ, j) is not d-blocked by V \ LG
ij in G∗ since ℓ ∈ V \ LG

ij . By I-faithfulness (As-
sumption 4.2), this means that xi ⊥̸⊥ p(1)xj | xV \LG

ij
. Since G∗ and G share the same skeleton, we

know i→ j and i← j are not in G. Using Lemma 4.5, we have that i ⊥⊥G j | V \ LG
ij . Hence by

Proposition 4.1, p(1) ̸∈ M(G). Similarly to Case 1, this implies that η(G) > 0 which in turn implies
that SI(G∗)− SI(G) > 0 (using the fact |G∗| = |G|).

Case 4: Suppose G contains an immorality i → ℓ ← j which is not present in G∗. Since
G and G∗ share the same skeleton and ℓ ̸∈ V \ LG

ij , we know there is a (potentially undirected)
path (i, ℓ, j) which is not d-blocked by V \ LG

ij in G∗. By I-faithfulness (Assumption 4.2), we
know that xi ⊥̸⊥ p(1)xj | xV \LG

ij
. However by Lemma 4.5, we have that i ⊥⊥G j | V \ LG

ij , which

implies, again by Proposition 4.1, that p(1) ̸∈ M(G). Thus, again by the same argument as Case 3,
SI(G∗)− SI(G) > 0.

So far, all cases did not require interventional nodes ζk. Cases 5 and 6 treat the difference in
immoralities implying interventional nodes ζk. Note that the arguments are analog to cases 3 and 4.

Case 5: Suppose that there is an immorality i→ ℓ← ζj in G∗I which does not appear in GI .
The path (i, ℓ, ζj) is not d-blocked by ζ−j ∪ V \ LGI

iζj
in G∗I since ℓ ∈ ζ−j ∪ V \ LGI

iζj
(by same

argument as presented in Case 3). By I-faithfulness (Assumption 4.2), this means that

p(1)(xi | xV \LGI
iζj

) ̸= p(j)(xi | xV \LGI
iζj

) . (4.56)

Thus, (p(1), p(j)) ̸∈ Z(i, V \ LGI

iζj
) (defined in Equation (4.35)).

On the other hand, Lemma 4.5 implies that i ⊥⊥GI ζj | ζ−j ∪ V \ LGI

iζj
. Thus by Proposition 4.2

and since FI(G) ⊆MI(G), we have that for all ϕ,

f
(1)
GIϕ(xi | xV \LGI

iζj

) = f
(j)
GIϕ(xi | xV \LGI

iζj

) i.e. (f (1)
GIϕ, f

(j)
GIϕ) ∈ Z(i, V \ LGI

iζj
) . (4.57)
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This means that SI(G∗) > SI(G) since

SI(G∗)− SI(G) = inf
ϕ

∑
k∈[K]

DKL(p(k)||f (k)
GIϕ) (4.58)

≥ inf
ϕ
DKL(p(1)||f (1)

GIϕ) +DKL(p(j)||f (j)
GIϕ) (4.59)

≥ inf
(f (1),f (j))∈Z(i,V \LGI

iζj
)
DKL(p(1)||f (1)) +DKL(p(j)||f (j)) (4.60)

> 0 . (4.61)

In (4.60), we use the fact that, for allϕ, (f (1)
GIϕ, f

(j)
GIϕ) ∈ Z(i, V \ LGI

iζj
). The very last strict inequality

holds by Lemma 4.4, which applies here because (p(1), p(j)) ̸∈ Z(i, V \ LGI

iζj
).

Case 6: Suppose that there is an immorality i→ ℓ← ζj in GI which does not appear in G∗I .
The path (i, ℓ, ζj) is not d-blocked by ζ−j ∪ V \ LGI

iζj
in G∗I , since ℓ ̸∈ ζ−j ∪ V \ LGI

iζj
and both

I-DAGs share the same skeleton. It follows by I-faithfulness (Assumption 4.2) that

p(1)(xi | xV \LGI
iζj

) ̸= p(j)(xi | xV \LGI
iζj

) . (4.62)

On the other hand, Lemma 4.5 implies that i ⊥⊥GI ζj | ζ−j ∪ V \ LGI

iζj
. Again by the I-Markov

property (Proposition 4.2), it means that, for all ϕ,

f
(1)
GIϕ(xi | xV \LGI

iζj

) = f
(j)
GIϕ(xi | xV \LGI

iζj

) . (4.63)

By an argument identical to that of Case 5, it follows that SI(G∗) > SI(G).
The proof is complete since there is no other way in which GI and G∗I can differ in terms of

skeleton and immoralities. ■

A.3. Theory for unknown targets

Theorem 4.1 assumes implicitly that, for each intervention k, the ground truth interventional
target I∗

k is known. What if we do not have access to this information? We now present an extension
of Theorem 4.1 to unknown targets. In this setting, the interventional family I is learned similarly
to G. We denote the ground truth interventional family by I∗ := (I∗

1 , · · · , I∗
K) and assume that

I∗
1 := ∅. We first recall score introduced in Section 4.3.3:

S(G, I) := sup
ϕ

K∑
k=1

Ex∼p(k) log f (k)(x;MG,RI ,ϕ)− λ|G| − λR|I| , (4.64)

where f (k)(x;MG,RI ,ϕ) was defined in (4.15) and |I| =
∑K

k=1 |Ik|. Notice that the assumption
that I∗

1 = ∅ is integrated in the joint density of (4.15) with k = 1 (the row vectorRI
1: has no effect).
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The only difference between SI∗(G) and S(G, I) is that, in the latter, I is considered a variable and
the extra regularizing term −λR|I|.

The result of this section relies on the exact same assumptions as those of Theorem 4.1, namely
Assumptions 4.1, 4.2, 4.3 & 4.4.

The next Lemma is an adaptation of Lemma 4.2 to this new setting.

Lemma 4.6 (Rewriting of score differences). Under Assumption 4.1 & 4.4, we have

S(G∗, I∗)− S(G, I) = inf
ϕ

∑
k∈[K]

DKL(p(k)||f (k)
GIϕ) + λ(|G| − |G∗|) + λR(|I| − |I∗|) . (4.65)

Proof. We note that |S(G∗, I∗)| = |SI∗(G∗)− λR|I∗|| <∞, by Lemma 4.1. This implies that
the difference S(G∗, I∗)− S(G, I) is always well defined.

The rest of the proof is identical to Lemma 4.2.■
We are now ready to state and prove our identifiability result for unknown targets.

Theorem 4.2 (Unknown targets identification). Suppose I∗ is such that I∗
1 := ∅. Let G∗ be

the ground truth DAG and (Ĝ, Î) ∈ arg maxG∈DAG,I S(G, I). Under the same assumptions as

Theorem 4.1 and for λ, λR > 0 small enough, Ĝ is I∗-Markov equivalent to G∗ and Î = I∗.

Proof: We simply add two cases at the beginning of the proof of Theorem 4.1 to handle cases
where I ̸= I∗ (we will denote them by Case 0.1 and Case 0.2). Similarly to Theorem 4.1, it is
sufficient to prove that, whenever G ̸∈ I∗-MEC(G∗) or I ≠ I∗, we have that S(G∗, I∗) > S(G, I).
For convenience, let us define

η(G, I) := inf
ϕ

∑
k∈[K]

DKL(p(k)||f (k)
GIϕ) . (4.66)

Case 0.1: Let I be the set of all I such that there exists k0 ∈ [K] and j ∈ [d] such that j ∈ I∗
k0

but j ̸∈ Ik0 . Let I ∈ I and let G be an arbitrary DAG.
Since the edge ζk0 → j is in G∗I∗ , we have that ζk0 and j are never d-separated. By

I∗-faithfulness (Assumption 4.2), we have that

p(1)(xj|xπG
j
) ̸= p(k0)(xj|xπG

j
) . (4.67)

Note that this is true for any conditioning set. It means (p(1), p(k0)) ̸∈ Z(j, πG
j ) (defined in (4.35)).

Since j ̸∈ Ik, we have by definition from (4.15) that, for all ϕ,

f
(1)
GIϕ(xj|xπG

j
) = f

(k0)
GIϕ(xj|xπG

j
) i.e. (f (1)

GIϕ, f
(k0)
GIϕ) ∈ Z(j, πG

j ). (4.68)
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This implies that

η(G, I) ≥ inf
ϕ
DKL(p(1)||f (1)

GIϕ) +DKL(p(k0)||f (k0)
GIϕ) (4.69)

≥ inf
(f (1),f (k0))∈Z(j,πG

j )
DKL(p(1)||f (1)) +DKL(p(k0)||f (k0)) (4.70)

> 0 , (4.71)

where (4.70) holds because, for all ϕ, (f (1)
GIϕ, f

(k0)
GIϕ) ∈ Z(j, πG

j ) and (4.71) holds by Lemma 4.4.
If min{|G| − |G∗|, |I| − |I∗|} ≥ 0, then clearly S(G∗, I∗) − S(G, I) > 0. Let

S := {(G, I) ∈ DAG× I | min{|G| − |G∗|, |I| − |I∗|} < 0}. To make sure we have
S(G∗, I∗)− S(G, I) > 0 for all (G, I) ∈ S, we need to pick λ and λR sufficiently small.
Choosing λ+ λR < min(G,I)∈S

η(G,I)
− min{|G|−|G∗|,|I|−|I∗|} is sufficient since (and note that the minimum

exists because the set S is finite, and is strictly positive by (4.71)):

λ+ λR < min
(G,I)∈S

η(G, I)
−min{|G| − |G∗|, |I| − |I∗|}

(4.72)

⇐⇒ λ+ λR <
η(G, I)

−min{|G| − |G∗|, |I| − |I∗|}
∀(G, I) ∈ S (4.73)

⇐⇒ − (λ+ λR) min{|G| − |G∗|, |I| − |I∗|} < η(G, I) ∀(G, I) ∈ S (4.74)

⇐⇒ 0 < η(G, I) + (λ+ λR) min{|G| − |G∗|, |I| − |I∗|} ∀(G, I) ∈ S (4.75)

≤ η(G, I) + λ(|G| − |G∗|) + λR(|I| − |I∗|) (4.76)

= S(G∗, I∗)− S(G, I) . (4.77)

From now on, we can assume I∗
k ⊆ Ik for all k ∈ [K], since otherwise we are in Case 0.1.

Case 0.2: Let Ī := {I | [I∗
k ⊆ Ik ∀k] and [∃ k0, j s.t. j ∈ Ik0 and j ̸∈ I∗

k0
]}. Let I ∈ Ī and let G

be a DAG. We can already notice that |I| > |I∗|.
If |G| ≥ |G∗|, then S(G∗, I∗)−S(G, I) > 0 by (4.65). Let S̄ := {(G, I) ∈ DAG× Ī | |G| < |G∗|}.

To make sure S(G∗, I∗)− S(G, I) > 0 for all (G, I) ∈ S̄, we need to pick λ sufficiently small.
Choosing λ < min(G,I)∈S̄

η(G,I)+λR(|I|−|I∗|)
|G∗|−|G| is sufficient since this implies

λ <
η(G, I) + λR(|I| − |I∗|)

|G∗| − |G|
∀ (G, I) ∈ S̄ (4.78)

⇐⇒ λ(|G∗| − |G|) < η(G, I) + λR(|I| − |I∗|) ∀ (G, I) ∈ S̄ (4.79)

⇐⇒ 0 < η(G, I) + λ(|G| − |G∗|) + λR(|I| − |I∗|) ∀ (G, I) ∈ S̄ (4.80)

= S(G∗, I∗)− S(G, I) . (4.81)

Cases 0.1 & 0.2 cover all situations where I ≠ I∗. This implies that Î = I∗. For the rest of the
proof, we can assume that I = I∗. By noting that S(G∗, I∗)− S(G, I) = SI∗(G∗)− SI∗(G), we
can apply exactly the same steps as in Theorem 4.1 to show that Ĝ ∈ I∗-MEC(G∗).
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We will end up with multiple conditions on λ and λR. We now make sure they can all be
satisfied simultaneously. Recall the three conditions we derived:

λ+ λR < min
(G,I)∈S

η(G, I)
−min{|G| − |G∗|, |I| − |I∗|}

=: α (4.82)

λ < min
(G,I)∈S̄

η(G, I) + λR(|I| − |I∗|)
|G∗| − |G|

=: β(λR) (4.83)

λ < min
G∈G+

η(G, I∗)
|G∗| − |G|

=: γ , (4.84)

where the third condition comes from the steps of Theorem 4.1. We can simply pick λR ∈ (0, α)
and λ ∈ (0,min{α− λR, β(λR), γ}). ■

A.4. Adapting the score to perfect interventions

The score developed in Section 4.3.1 is designed for general imperfect interventions. Since
perfect interventions are just a special case of imperfect ones, this score will work on perfect
interventions without problems. However, one can leverage the fact that the interventions are perfect
to simplify the score a little bit.

max
G∈DAG

SI∗(G) (4.85)

= max
G∈DAG

sup
ϕ

K∑
k=1

Ex∼p(k) log f (k)(x;MG,RI∗
,ϕ)− λ|G| (4.86)

= max
G∈DAG

sup
ϕ(1)

 K∑
k=1

Ex∼p(k) log
∏
j ̸∈I∗

k

f̃(xj; NN(MG
j ⊙ x;ϕ(1)

j ))


+ sup
ϕ(2),...,ϕ(K)

 K∑
k=2

Ex∼p(k) log
∏
j∈I∗

k

f̃(xj; NN(MG
j ⊙ x;ϕ(k)

j ))

− λ|G| (4.87)

= max
G∈DAG

sup
ϕ(1)

 K∑
k=1

Ex∼p(k) log
∏
j ̸∈I∗

k

f̃(xj; NN(MG
j ⊙ x;ϕ(1)

j ))


+ sup
ϕ(2),...,ϕ(K)

 K∑
k=2

Ex∼p(k) log
∏
j∈I∗

k

f̃(xj; NN(0⊙ x;ϕ(k)
j ))

− λ|G| , (4.88)

where in (4.88) we use the fact that the interventions are perfect. In (4.88), the second sup does
not depend on G, so it can be ignored without changing the arg maxG∈DAG.
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Hence, for perfect intervention we use the score

Sperf
I∗ (G) := sup

ϕ(1)

 K∑
k=1

Ex∼p(k) log
∏
j ̸∈I∗

k

f̃(xj; NN(MG
j ⊙ x;ϕ(1)

j ))

− λ|G| . (4.89)

B. Additional information

B.1. Synthetic data sets

In this section, we describe how the different synthetic data sets were generated. For each type
of data set, we first sample a DAG following the Erdős-Rényi scheme and then we sample the
parameters of the different causal mechanisms as stated below (in the bulleted list). For 10-node
graphs, single node interventions are performed on every node. For 20-node graphs, interventions
target 1 to 2 nodes chosen uniformly at random. Then, n/(d+ 1) examples are sampled for each
interventional setting (if n is not divisible by d+ 1, some intervention setting may have one extra
sample in order to have a total of n samples). The data are then normalized: we subtract the mean
and divide by the standard deviation. For all data sets, the source nodes are Gaussian with zero
mean and variance sampled from U [1, 2]. The noise variables Nj are mutually independent and
sampled from N (0, σ2

j ) ∀j, where σ2
j ∼ U [1, 2].

For perfect intervention, the distribution of intervened nodes is replaced by a marginal N (2, 1).
This type of intervention, that produce a mean-shift, is similar to those used in Hauser and Bühlmann
[2012], Squires et al. [2020]. For imperfect interventions, besides the initial parameters, an extra
set of parameters were sampled by perturbing the initial parameters as described below. For nodes
without parents, the distribution of intervened nodes is replaced by a marginal N (2, 1). Both for
the perfect and imperfect cases, we explore other types of interventions and report the results in
Appendix C.5. We now describe the causal mechanisms and the nature of the imperfect intervention
for the three different types of data set:

• The linear data sets are generated following xj := w⊤
j xπG

j
+ 0.4 · nj ∀j, where wj is a

vector of |πG
j | coefficients each sampled uniformly from [−1,−0.25] ∪ [0.25, 1] (to make

sure there are no w close to 0). Imperfect interventions are obtained by adding a random
vector of U([−5,−2] ∪ [2, 5]) to wj .
• The additive noise model (ANM) data sets are generated following xj := fj(xπG

j
) + 0.4 · nj

∀j, where the functions fj are fully connected neural networks with one hidden layer of 10
units and leaky ReLU with a negative slope of 0.25 as nonlinearities. The weights of each
neural network are randomly initialized from N (0, 1). Imperfect interventions are obtained
by adding a random vector of N (0, 1) to the last layer.
• The nonlinear with non-additive noise (NN) data sets are generated following xj :=
fj(xπG

j
, nj) ∀j, where the functions fj are fully connected neural networks with one hidden
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layer of 20 units and tanh as nonlinearities. The weights of each neural network are randomly
initialized from N (0, 1). Similarly to the additive noise model, imperfect intervention are
obtained by adding a random vector of N (0, 1) to the last layer.

B.2. Deep Sigmoidal Flow: Architectural details

A layer of a Deep Sigmoidal Flow is similar to a fully-connected network with one hidden layer,
a single input, and a single output, but is defined slightly differently to ensure that the mapping is
invertible and that the Jacobian is tractable. Each layer l is defined as follows:

h(l)(x) = σ−1(w⊤σ(a · x+ b)) , (4.90)

where 0 < wi < 1,
∑

iwi = 1 and ai > 0. In our method, the neural networks NN(·;ϕ(k)
j ) output

the parameters (wj,aj, bj) for each DSF τj . To ensure that the determinant of the Jacobian is
calculated in a numerically-stable way, we follow the recommendations of Huang et al. [2018b].
While other flows like the Deep Dense Sigmoidal Flow have more capacity, DSF was sufficient for
our use.

B.3. Optimization

In this section, we show how the augmented Lagrangian is applied, how the gradient is estimated
and, finally, we illustrate the learning dynamics by analyzing an example.

Let us recall the score and the optimization problem from Section 4.3.2:

Ŝint(Λ) := sup
ϕ

E
M∼σ(Λ)

[
K∑

k=1
E

x∼p(k)
log f (k)(x;M ,ϕ)− λ||M ||0

]
, (4.91)

sup
Λ
Ŝint(Λ) s.t. Tr eσ(Λ) − d = 0 . (4.92)

We optimize for ϕ and Λ jointly, which yields the following optimization problem:

sup
ϕ,Λ

E
M∼σ(Λ)

[
K∑

k=1
E

x∼p(k)
log f (k)(x;M ,ϕ)

]
− λ||σ(Λ)||1 s.t. Tr eσ(Λ) − d = 0 , (4.93)

where we used the fact that EM∼σ(Λ) ||M ||0 = ||σ(Λ)||1. Let us use the notation:

h(Λ) := Tr eσ(Λ) − d. (4.94)

The augmented Lagrangian transforms the constrained problem into a sequence of unconstrained
problems of the form

sup
ϕ,Λ

E
M∼σ(Λ)

[
K∑

k=1
E

x∼p(k)
log f (k)(x;M ,ϕ)

]
− λ||σ(Λ)||1 − γth(Λ)− µt

2 h(Λ)2 , (4.95)
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where γt and µt are the Lagrangian multiplier and the penalty coefficient of the tth unconstrained
problem, respectively. In all our experiments, we initialize γ0 = 0 and µ0 = 10−8. Each such
problem is approximately solved using a stochastic gradient descent algorithm (RMSprop Tieleman
and Hinton [2012] in our experiments). We consider that a subproblem has converged when (4.95)
evaluated on a held-out data set stops increasing. Let (ϕ∗

t ,Λ∗
t ) be the approximate solution to

subproblem t. Then, γt and µt are updated according to the following rule:

γt+1 ← γt + µt · h (Λ∗
t )

µt+1 ←

{
η · µt, if h (Λ∗

t ) > δ · h
(
Λ∗

t−1
)

µt, otherwise

(4.96)

with η = 2 and δ = 0.9. Each subproblem t is initialized using the previous subproblem’s solution
(ϕ∗

t−1,Λ∗
t−1). The augmented Lagrangian method stops when h(Λ) ≤ 10−8 and the graph formed

by adding an edge whenever σ(Λ) > 0.5 is acyclic.
Gradient estimation. The gradient of (4.95) w.r.t. ϕ and Λ is estimated by

∇ϕ,Λ

[
1
|B|

∑
i∈B

log f (ki)(x(i);M (i),ϕ)− λth(Λ)− µt

2 h(Λ)2

]
, (4.97)

where B is an index set sampled without replacement, x(i) is an example from the training set and
ki is the index of its corresponding intervention. To compute the gradient of the likelihood part
w.r.t. Λ, we use the Straight-Through Gumbel-Softmax estimator, adapted to sigmoids Maddison
et al. [2017], Jang et al. [2017]. This approach was already used in the context of causal discovery
without interventional data Ng et al. [2019], Kalainathan et al. [2018]. The matrixM (i) is given by

M (i) := I(σ(Λ +L(i)) > 0.5) + σ(Λ +L(i))− grad-block(σ(Λ +L(i))) , (4.98)

where L(i) is a d × d matrix filled with independent Logistic samples, I is the indicator func-
tion applied element-wise and the function grad-block is such that grad-block(z) = z and
∇zgrad-block(z) = 0. This implies that each entry of M (i) evaluates to a discrete Bernoulli
sample with probability given by σ(Λ) while the gradient w.r.t. Λ is computed using the soft
Gumbel-Softmax sample. This yields a biased estimation of the actual gradient of objective (4.95),
but its variance is low compared to the popular unbiased REINFORCE estimator (a Monte Carlo
estimator relying on the log-trick) Rezende et al. [2014], Maddison et al. [2017]. A temperature
term can be added inside the sigmoid, but we found that a temperature of one gave good results.

In addition to this, we experimented with a different relaxation for the discrete variable M .
We tried treatingM directly as a learnable parameter constrained in [0, 1] via gradient projection.
However, this approach yielded significantly worse results. We believe that the factM is continuous
in this setting is problematic, since as an entry ofM gets closer and closer to zero, the weights of
the first neural network layer can compensate, without affecting the likelihood whatsoever. This
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cannot happen when using the Straight-Through Gumbel-Softmax estimator because the neural
network weights are only exposed to discreteM .
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Figure 4.6. Top: Learning curves during training. NLL and NLL on validation are respectively
the (pseudo) negative log-likelihood (NLL) on training and validation sets. AL minus NLL can be
thought of as the acyclicity constraint violation plus the edge sparsity regularizer. AL and AL on
validation set are the augmented Lagrangian objectives on training and validation set, respectively.
Middle and bottom: Entries of the matrix σ(Λ) w.r.t. to the number of iterations (green edges =
edge present in the ground truth DAG, red edges = edge not present). The adjacency matrix to the
left correspond to the ground truth DAG. The other matrices correspond to σ(Λ) at 20 000, 30 000
and 62 000 iterations.
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Learning dynamics. We present in Figure 4.6 the learning curves (top) and the matrix σ(Λ)
(middle and bottom) as DCDI-DSF is trained on a linear data set with perfect intervention sampled
from a sparse 10-node graph (the same phenomenon was observed in a wide range of settings). In
the graph at the top, we show the augmented Lagrangian and the (pseudo) negative log-likelihood
(NLL) on train and validation set. To be exact, the NLL corresponds to a negative log-likelihood
only once acyclicity is achieved. In the graph representing σ(Λ) (middle), each curve represents a
σ(αij): green edges are edges present in the ground truth DAG and red edges are edges not present.
The same information is presented in matrix form for a few specific iterations and can be easily
compared to the adjacency matrix of the ground truth DAG (white = presence of an edge, blue =
absence). Recall that when a σ(αij) is equal (or close to) 0, it means that the entry ij of the mask
M will also be 0. This is equivalent to say that the edge is not present in the learned DAG.

In this section, we review some important steps of the learning dynamics. At first, the NLL on
the training and validation sets decrease sharply as the model fits the data. Around iteration 5000,
the decrease slows down and the weights of the constraint (namely γ and µ) are increased. This
puts pressure on the entries σ(αij) to decrease. At iteration 20 000, many σ(αij) that correspond to
red edges have diminished close to 0, meaning that edges are correctly removed. It is noteworthy to
mention that the matrix at this stage is close to being symmetric: the algorithm did not yet choose
an orientation for the different edges. While this learned graph still has false-positive edges, the
skeleton is reminiscent of a Markov Equivalence Class. As the training progresses, the weights of
the constraint are greatly increased passed the 20 000th iteration leading to the removal of additional
edges (leading also to an NLL increase). Around iteration 62 000 (the second vertical line), the
stopping criterion is met: the acyclicity constraint is below the threshold (i.e. h(Λ) ≤ 10−8),
the learned DAG is acyclic and the augmented Lagrangian on the validation set is not improving
anymore. Edges with a σ(αij) higher than 0.5 are set to 1 and others set to 0. The learned DAG has
a SHD of 1 since it has a reversed edge compared to the ground truth DAG.

Finally, we illustrate the learning of interventional targets in the (perfect) unknown intervention
setting by comparing an example of σ(βkj), the learned targets, with the ground truth targets in
Figure 4.7. Results are from DCDI-G on 10-node graph with higher connectivity. Each column
corresponds to an interventional target Ik and each row corresponds to a node. In the right matrix, a
dark grey square in position ij means that the node i was intervened on in the interventional setting
Ij . Each entry of the left matrix corresponds to the value of σ(βkj). The binary matrix R (from
Equation 4.15) is sampled following these entries.

B.4. Baseline methods

In this section, we provide additional details on the baseline methods and cite the implementa-
tions that were used. GIES has been designed for the perfect interventions setting. It assumes linear
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Figure 4.7. Learned targets σ(βkj) compared to the ground truth targets.

relations with Gaussian noise and outputs an I-Markov equivalence classes. In order to obtain the
SHD and SID, we compare a DAG randomly sampled from the returned I-Markov equivalence
classes to the ground truth DAG. CAM has been modified to support perfect interventions. In
particular, we used the loss that was already present in the code (similarly to the loss proposed for
DCDI in the perfect intervention setting). Also, the preliminary neighbor search (PNS) and pruning
processes were modified to not take into account data where variables are intervened on. Note that,
while these two methods yield competitive results in the imperfect intervention setting, they were
designed for perfect interventions: the targeted conditional are not fitted by an additional model
(in contrast to our proposed score), they are simply removed from the score. Finally, JCI-PC is
JCI used with the PC method Mooij et al. [2020]. The graph to learn is augmented with context
variables (one per system variable in our case). This modified version of PC can deal with unknown
interventions. For the conditional independence test, we only used the gaussian CI test since using
KCI-test was too slow for this algorithm.

For GIES, we used the implementation from the R package pcalg. For CAM, we modified
the implementation from the R package pcalg. For IGSP and UT-IGSP, we used the imple-
mentation from https://github.com/uhlerlab/causaldag. The cutoff values used for
alpha-inv was always the same as alpha. For JCI-PC, we modified the implementation from
the R package pcalg using code from the JCI repository: https://github.com/caus-am/
jci/tree/master/jci. The normalizing flows that we used for DCDI-DSF were adapted
from the DSF implementation provided by its author Huang et al. [2018b]. We also used several
tools from the Causal Discovery Toolbox (https://github.com/FenTechSolutions/
CausalDiscoveryToolbox) Kalainathan and Goudet [2019] to interface R with Python and
to compute the SHD and SID metrics.

B.5. Default hyperparameters and hyperparameter search

For all score-based methods, we performed a hyperparameter search. The models were trained
on 80% examples and evaluated on the 20% remaining examples. The hyperparameter combination
chosen was the one that induced the lowest negative log-likelihood on the held-out examples. For

117

https://github.com/uhlerlab/causaldag
https://github.com/caus-am/jci/tree/master/jci
https://github.com/caus-am/jci/tree/master/jci
https://github.com/FenTechSolutions/CausalDiscoveryToolbox
https://github.com/FenTechSolutions/CausalDiscoveryToolbox


DCDI, a grid search was performed over 10 values of the regularization coefficient (see Table 4.1)
for known interventions (10 hyperparameter combinations in total) and, in the unknown intervention
case, 3 values for the regularization coefficient of the learned targets λR were also explored (30
hyperparameter combinations in total). For GIES and CAM, 50 hyperparameter combinations were
considered using a random search following the sampling scheme of Table 4.1.

For IGSP, UT-IGSP and JCI-PC, we could not do a similar hyperparameter search since there
is no score available to rank hyperparameter combinations. Thus, all examples were used to fit
the model. Despite this, for IGSP and UT-IGSP, we explored a range of cutoff values around
10−5 (the value used for all the experiments in Squires et al. [2020]): α = {2e − 1, 1e − 1, 1e −
2, 1e− 3, 1e− 5, 1e− 7, 1e− 9}. In the main text and figures, we report results with α = 1e− 3,
which yielded low SHD and SID. For JCI-PC, we tested the following range of cutoff values:
α = {2e − 1, 1e − 1, 1e − 2, 1e − 3} and report results with α = 1e − 3. Note that in a realistic
setting, we do not have access to the ground truth graphs to choose a good cutoff value.

Hyperparameter space

DCDI log10(λ) ∼ U{−7,−6,−5,−4,−3,−2,−1, 0, 1, 2}
log10(λR) ∼ U{−4,−3,−2} (only for unknown interventions)

CAM log10(pruning cutoff) ∼ U [−7, 0]
GIES log10(regularizer coefficient) ∼ U [−4, 4]

Table 4.1. Hyperparameter search spaces for each algorithm

Except for the normalizing flows of DCDI-DSF, DCDI-G and DCDI-DSF used exactly the same
default hyperparameters that are summarized in Table 4.2. Some of these hyperparameters (µ0, γ0),
which are related to the optimization process are presented in Appendix B.3. These hyperparameters
were used for almost all experiments, except for the real-world data set and the two-node graphs with
complex densities, where overfitting was observed. Smaller architectures were tested until no major
overfitting was observed. The default hyperparameters were chosen using small-scale experiments
on perfect-known interventions data sets in order to have a small SHD. Since we observed that
DCDI is not highly sensible to changes in hyperparameter values, only the regularization factors
were part of a more thorough hyperparameter search. The neural networks were initialized following
the Xavier initialization Glorot and Bengio [2010a]. The neural network activation functions were
leaky-ReLU. RMSprop was used as the optimizer Tieleman and Hinton [2012] with minibatches of
size 64.
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DCDI hyperparameters

µ0: 10−8, γ0: 0, η: 2, δ: 0.9
Augmented Lagrangian constraint threshold: 10−8

learning rate: 10−3

# hidden units: 16
# hidden layers: 2
# flow hidden units: 16 (only for DCDI-DSF)
# flow hidden layers: 2 (only for DCDI-DSF)

Table 4.2. Default Hyperparameter for DCDI-G and DCDI-DSF

C. Additional experiments

C.1. Real-world data set

We tested the methods that support perfect intervention on the flow cytometry data set of Sachs
et al. [2005]. The measurements are the level of expression of phosphoproteins and phospholipids
in human cells. Interventions were performed by using reagents to activate or inhibit the measured
proteins. As in Wang et al. [2017], we use a subset of the data set, excluding experimental
conditions where the perturbations were not directly done on a measured protein. This subset
comprises 5 846 measurements: 1 755 measurements are considered observational, while the other
4 091 measurements are from five different single node interventions (with the following proteins
as targets: Akt, PKC, PIP2, Mek, PIP3). The consensus graph from Sachs et al. [2005] that we
use as the ground truth DAG contains 11 nodes and 17 edges. While the flow cytometry data set is
standard in the causal structure learning literature, some concerns have been raised. The “consensus”
network proposed by Sachs et al. [2005] has been challenged by some experts Mooij et al. [2016].
Also, several assumptions of the different models may not be respected in this real-world data set
(for more details, see Mooij et al. [2016]): i) the causal sufficiency assumption may not hold, ii) the
interventions may not be as specific as stated, and iii) the ground truth network is possibly not a
DAG since feedback loops are common in cellular signaling networks.

Method SHD SID tp fn fp rev F1 score

IGSP 18 54 4 6 5 7 0.42
GIES 38 34 10 0 41 7 0.33
CAM 35 20 12 1 30 4 0.51

DCDI-G 36 43 6 2 25 9 0.31
DCDI-DSF 33 47 6 2 22 9 0.33

Table 4.3. Results for the flow cytometry data sets
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In Table 4.3 we report SHD and SID for all methods, along with the number of true positive (tp),
false-negative (fn), false positive (fp), reversed (rev) edges, and the F1 score. There are no measures
of central tendencies, since there is only one graph. The modified version of CAM has overall the
best performance: the highest F1 score and a low SID. IGSP has a low SHD, but a high SID, which
can be explained by the relatively high number of false negative. DCDI-G and DCDI-DSF have
SHDs comparable to GIES and CAM, but higher than IGSP. In terms of SID, they outperform IGSP,
but not GIES and CAM. Finally, the DCDI models have F1 scores similar to that of GIES. Hence,
we conclude that DCDI performs comparably to the state of the art on this data set, while none of
the methods show great performance across the board.
Hyperparameters. We report the hyperparameters used for Table 4.3. IGSP used the KCI-test
with a cutoff value of 10−3. Hyperparameters for CAM and GIES were chosen following the
hyperparameter search described in Appendix B.5. For DCDI, since overfitting was observed,
we included some hyperparameters related to the architecture in the hyperparameter grid search
(number of hidden units: {4, 8}, number of hidden layers: {1, 2} and only for DSF, number of flow
hidden units: {4, 8}, number of flow layers: {1, 2}), and used the scheme described in Appendix B.5
for choosing the regularization coefficient.

C.2. Learning causal direction from complex distributions

To show that insufficient capacity can hinder learning the right causal direction, we used toy data
sets with simple 2-node graphs under perfect and imperfect interventions. We show, in Figure 4.8
and 4.9, the joint densities respectively learned by DCDI-DSF and DCDI-G. We tested two different
data sets: X and DNA, which corresponds to the left and right column, respectively. In both data
sets, we experimented with perfect and imperfect interventions, on both the cause and the effect,
i.e. I = (∅, {1}, {2}). In both figures, the top row corresponds to the learned densities when no
intervention are performed. The bottom row corresponds to the learned densities under an imperfect
intervention on the effect variable (changing the conditional).

For the X data set, both under perfect and imperfect interventions, the incapacity of DCDI-G to
model this complex distribution properly makes it conclude (falsely) that there is no dependency
between the two variables (the µ outputted by DCDI-G is constant). Conversely, for the DNA
data set with perfect interventions, it does infer the dependencies between the two variables and
learn the correct causal direction, although the distribution is modeled poorly. Notice that, for the
DNA data set with imperfect interventions, the lack of capacity of DCDI-G has pushed it to learn
the same density with and without interventions (compare the two densities in the second column
of Figure 4.9; the learned density functions remain mostly unchanged from top to bottom). This
prevented DCDI-G from learning the correct causal direction, while DCDI-DSF had no problem.
We believe that if the imperfect interventions were more radical, DCDI-G could have recovered
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Figure 4.8. Joint density learned by DCDI-DSF. White dots are data points and the color represents
the learned density. The x-axis is cause and the y-axis is the effect. First row is observational while
second row is with an imperfect intervention on the effect.

Figure 4.9. Joint density learned by DCDI-G. White dots are data points and the color represents
the learned density. The x-axis is cause and the y-axis is the effect. First row is observational while
second row is with an imperfect intervention on the effect.

the correct direction even though it lacks capacity. In all cases, DCDI-DSF can easily model these
functions and systematically infers the right causal direction.

While the proposed data sets are synthetic, similar multimodal distributions could be observed
in real-world data sets due to latent variables that are parent of only one node (i.e., that are not
confounders). A hidden variable that act as a selector between two different mechanisms could
induce distributions similar to those in Figures 4.8 and 4.9. In fact, this idea was used to produce
the synthetic data sets, i.e., a latent variable z ∈ {0, 1} was sampled and, according to its value,
examples were generated following one of two mechanisms. The X dataset (second column in the
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figures) was generated by two linear mechanisms in the following way:

y :=

wx+N z = 0

−wx+N z = 1,

where N is a Gaussian noise and w was randomly sampled from [−1,−0.25] ∪ [0.25, 1].

C.3. Scalability experiments

Figure 4.10 presents two experiments which study the scalability of various methods in terms of
number of examples (left) and number of variables (right). In these experiments, the runtime was
restricted to 12 hours while the RAM memory was restricted to 16GB. All experiments considered
perfect interventions. Experiments from Figure 4.10 were run with fixed hyperparameters. DCDI.
Same as Table 4.2 except µ0 = 10−2, # hidden units = 8 and λ = 10−1. CAM. Pruning cutoff =
10−3. Preliminary neighborhood selection was performed in the large graph experiments (otherwise
CAM cannot run on 50 nodes in less than 12 hours). GIES. Regularizing parameter = 1. IGSP.
The suffixes -G and -K refers to the partial correlation test and the KCI-test, respectively. The α
parameter is set to 10−3.
Number of examples. DCDI was the only algorithm supporting nonlinear relationships that could
run on as much as 1 million examples without running out of time or memory. We believe different
trade-offs between SHD and SID could be achieved with different hyperparameters, especially for
GIES and CAM which achieved very good SID but poor SHD.
Number of variables. We see that using a GPU starts to pay off for graphs of 50 nodes or more.
For 10-50 nodes data sets, DCDI-GPU outperforms the other methods in terms of SHD and SID,
while maintaining a runtime similar to CAM. For the hundred-node data sets, the runtime of
DCDI increases significantly with a SHD/SID performance comparable to the much faster GIES.
We believe the weaker performance of DCDI in the hundred-node setting is due to the fact that
the conditionals are high dimensional functions which are prone to overfitting. Also, we believe
this runtime could be significantly reduced by limiting the number of parents via preliminary
neighborhood selection similar to CAM Bühlmann et al. [2014]. This would have the effect of
reducing the cost of computing the gradient of w.r.t. to the neural network parameters. These
adaptions to higher dimensionality are left as future work.

C.4. Ablation study

In this section, by doing ablation studies, we show that i) that interventions are beneficial to our
method to recover the DAG, ii) that the proposed losses yield better results than a standard loss
ignoring information about interventions, and iii) that the use of high capacity model is relevant for
nonlinear data sets.
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Figure 4.10. We report the runtime (in hours), SHD and SID of multiple methods in multiple
settings. The horizontal dashed lines at 12 hours represents the time limit imposed. When a curve
reaches this dashed line, it means that the method could not finish within 12 hours. We write
≥ 16G when the RAM memory needed by the algorithm exceeded 16GB. All data sets have 10
interventional targets containing 0.1d targets. We considered perfect interventions. Left: Different
data set sizes. Ten nodes ANM data with connectivity e = 1. Right: Different number of variables.
NN data set with connectivity e = 4 and 104 samples. Each curve is an average over 5 different
datasets while the error bars are %95 confidence intervals computed via bootstrap.

Effect of number of interventions. In a small scale experiment, we show in Figure 4.11
the effect of the number of interventions on the performance of DCDI-G. The SHD and SID of
DCDI-G and DCD are shown over ten linear data sets (20-node graph with sparse connectivity)
with {0, 5, 10, 15, 20} perfect interventions. The baseline DCD is equivalent to DCDI-G, but
it uses a loss that doesn’t take into account the interventions. It can first be noticed that, as
the number of interventions increases, the performance of DCDI-G increases. This increase is
particularly noticeable from the purely interventional data to data with 5 interventions. While
DCD’s performance also increases in terms of SHD, it seems to have no clear gain in terms of SID.
Also, DCDI-G with interventional data is always better than DCD showing that the proposed loss
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Figure 4.11. SHD and SID for DCDI-G and DCD on data sets with a different number of
interventional settings.

for perfect interventions is pertinent. Note that the first two boxes are the same since DCDI-G on
observational data is equivalent to DCD (the experiment was done only once).

Relevance of DCDI score to leverage interventional data. In a larger scale experiment, with
the same data sets used in the main text (Section 4.4), we compare DCDI-G and DCDI-DSF to
DCD and DCD-no-interv for perfect/known, imperfect/known and perfect/unknown interventions
(shown respectively in Appendix C.4.1, C.4.2, and C.4.3). The values reported are the mean and the
standard deviation of SHD and SID over ten data sets of each condition. DCD-no-interv is DCDI-G
applied to purely observational data. These purely observational data sets were generated from the
same CGM as the other data set containing interventions and had the same total sample size. For
SHD, the advantage of DCDI over DCD and DCD-no-interv is clear over all conditions. For SID,
DCDI has no advantage for sparse graphs, but is usually better for graphs with higher connectivity.
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As in the first small scale experiment, the beneficial effect of interventions is clear. Also, these
results show that the proposed losses for the different type of interventions are pertinent.

Relevance of neural network models. As a sanity check of our proposed method, we trained
DCDI-G without hidden layers, i.e. a linear model. In Table 4.4, 4.5 and 4.6, we report the mean
and standard deviation of SHD and SID over ten 20-node graphs for DCDI-linear and compare it to
results obtained for DCDI-G and DCDI-DSF (both using hidden layers). As expected, this linear
version of DCDI has competitive results for the linear data set, but poorer results on nonlinear data
sets, showing the interest of using high capacity models.

20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID

DCDI-linear 5.9 ± 7.6 7.1 ± 6.9 16.0 ± 6.7 98.3 ± 31.4

DCDI-G 5.4 ± 4.5 13.4 ± 12.0 23.7 ± 5.6 112.8 ± 41.8

DCDI-DSF 3.6 ± 2.7 6.0 ± 5.4 16.6 ± 6.4 92.5 ± 40.1

Table 4.4. Results for the linear data set with perfect intervention

20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID

DCDI-linear 29.6 ± 15.4 24.8 ± 18.4 66.2 ± 13.7 219.0 ± 41.7

DCDI-G 21.8 ± 30.1 11.6 ± 13.1 35.2 ± 13.2 109.8 ± 44.6

DCDI-DSF 4.3 ± 1.9 19.7 ± 12.6 26.7 ± 16.9 105.3 ± 22.7

Table 4.5. Results for the additive noise model data set with perfect intervention

20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID

DCDI-linear 19.8 ± 12.7 14.2 ± 9.2 45.6 ± 12.0 177.9 ± 27.6

DCDI-G 13.9 ± 20.3 13.7 ± 8.1 16.8 ± 8.7 82.5 ± 38.1

DCDI-DSF 8.3 ± 4.1 32.4 ± 17.3 11.8 ± 2.1 102.3 ± 34.5

Table 4.6. Results for the nonlinear with non-additive noise data set with perfect intervention
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10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID SHD SID SHD SID

DCD 6.6 ± 3.6 14.1 ± 11.5 24.4 ± 6.0 67.0 ± 9.2 18.2 ± 15.8 30.9 ± 21.7 56.7 ± 10.2 227.0 ± 38.6

DCD-no-interv 8.9 ± 2.8 19.5 ± 10.9 26.7 ± 5.9 69.0 ± 11.2 24.6 ± 20.5 31.2 ± 22.8 64.4 ± 11.4 292.9 ± 28.9

DCDI-G 1.3 ± 1.9 0.8 ± 1.8 3.3 ± 2.1 10.7 ± 12.0 5.4 ± 4.5 13.4 ± 12.0 23.7 ± 5.6 112.8 ± 41.8

DCDI-DSF 0.9 ± 1.3 0.6 ± 1.9 3.7 ± 2.3 18.9 ± 14.1 3.6 ± 2.7 6.0 ± 5.4 16.6 ± 6.4 92.5 ± 40.1

Table 4.7. Results for the linear data set with perfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID SHD SID SHD SID

DCD 11.5 ± 6.6 18.2 ± 11.8 30.4 ± 3.8 75.5 ± 4.6 39.3 ± 28.4 39.8 ± 33.3 62.7 ± 14.2 241.0 ± 44.8

DCD-no-interv 11.6 ± 8.8 15.8 ± 12.1 21.3 ± 5.2 63.5 ± 12.3 41.7 ± 44.1 36.2 ± 27.1 43.7 ± 9.2 226.1 ± 42.8

DCDI-G 5.2 ± 7.5 2.4 ± 4.9 4.3 ± 2.4 16.0 ± 11.9 21.8 ± 30.1 11.6 ± 13.1 35.2 ± 13.2 109.8 ± 44.6

DCDI-DSF 4.2 ± 5.6 5.6 ± 5.5 5.5 ± 2.4 23.9 ± 14.3 4.3 ± 1.9 19.7 ± 12.6 26.7 ± 16.9 105.3 ± 22.7

Table 4.8. Results for the additive noise model data set with perfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID SHD SID SHD SID

DCD 5.9 ± 6.9 10.9 ± 10.4 15.7 ± 4.9 53.0 ± 9.9 28.7 ± 13.0 29.7 ± 9.3 29.3 ± 8.9 163.1 ± 48.4

DCD-no-interv 11.0 ± 9.3 9.9 ± 11.0 18.4 ± 6.4 56.4 ± 11.0 16.5 ± 22.8 31.9 ± 17.5 31.6 ± 11.3 160.3 ± 46.3

DCDI-G 2.3 ± 3.6 2.7 ± 3.3 2.4 ± 1.6 13.9 ± 8.5 13.9 ± 20.3 13.7 ± 8.1 16.8 ± 8.7 82.5 ± 38.1

DCDI-DSF 7.0 ± 10.7 7.8 ± 5.8 1.6 ± 1.6 7.7 ± 13.8 8.3 ± 4.1 32.4 ± 17.3 11.8 ± 2.1 102.3 ± 34.5

Table 4.9. Results for the nonlinear with non-additive noise data set with perfect intervention

C.4.1. Perfect interventions.

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID SHD SID SHD SID

DCD 10.6 ± 5.4 24.6 ± 18.2 24.0 ± 4.1 67.2 ± 7.6 21.2 ± 11.5 56.0 ± 31.5 56.7 ± 9.0 268.0 ± 25.4

DCD-no-interv 6.8 ± 4.4 19.5 ± 13.2 27.4 ± 4.4 74.0 ± 7.2 19.8 ± 9.2 48.2 ± 30.6 58.2 ± 9.9 288.6 ± 31.6

DCDI-G 2.7 ± 2.8 8.2 ± 8.8 5.2 ± 3.5 25.1 ± 12.9 15.6 ± 14.5 29.1 ± 23.4 34.0 ± 7.7 180.9 ± 44.5

DCDI-DSF 1.3 ± 1.3 4.2 ± 4.0 1.7 ± 2.4 10.2 ± 14.9 6.9 ± 6.3 22.7 ± 21.9 21.7 ± 8.1 137.4 ± 34.3

Table 4.10. Results for the linear data set with imperfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID SHD SID SHD SID

DCD 12.0 ± 9.2 14.8 ± 10.4 24.3 ± 3.8 64.5 ± 11.1 51.7 ± 41.7 44.5 ± 20.0 54.1 ± 12.0 196.6 ± 37.2

DCD-no-interv 14.6 ± 4.3 12.1 ± 11.8 24.8 ± 4.8 69.3 ± 8.3 49.5 ± 36.0 32.7 ± 22.7 41.2 ± 8.1 197.7 ± 50.1

DCDI-G 6.2 ± 5.4 7.6 ± 11.0 13.1 ± 2.9 48.1 ± 9.1 30.5 ± 33.0 12.5 ± 8.8 43.1 ± 10.2 96.6 ± 47.1

DCDI-DSF 13.4 ± 8.4 17.9 ± 10.5 14.4 ± 2.4 53.2 ± 8.2 13.1 ± 4.5 43.5 ± 19.2 50.5 ± 11.4 172.1 ± 19.6

Table 4.11. Results for the additive noise model data set with imperfect intervention
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10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID SHD SID SHD SID

DCD 12.7 ± 8.4 11.8 ± 7.3 15.2 ± 3.7 52.2 ± 9.1 40.4 ± 54.7 45.2 ± 43.9 30.5 ± 8.0 151.2 ± 41.7

DCD-no-interv 13.6 ± 9.7 13.0 ± 8.1 14.8 ± 3.5 51.7 ± 12.5 37.1 ± 40.7 57.1 ± 56.2 31.3 ± 5.5 162.3 ± 40.5

DCDI-G 3.9 ± 3.9 7.5 ± 6.5 7.3 ± 2.2 28.0 ± 10.5 18.2 ± 28.8 36.9 ± 37.0 21.7 ± 8.0 127.3 ± 40.1

DCDI-DSF 5.3 ± 4.2 16.3 ± 10.0 5.9 ± 3.2 35.1 ± 12.3 13.2 ± 5.1 76.5 ± 57.8 16.8 ± 5.3 143.6 ± 48.8

Table 4.12. Results for the nonlinear with non-additive noise data set with imperfect intervention

C.4.2. Imperfect interventions.

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID SHD SID SHD SID

DCD 6.6 ± 3.6 14.1 ± 11.5 24.4 ± 6.0 67.0 ± 9.2 18.2 ± 15.8 30.9 ± 21.7 56.7 ± 10.2 227.0 ± 38.6

DCD-no-interv 8.9 ± 2.8 19.5 ± 10.9 26.7 ± 5.9 69.0 ± 11.2 24.6 ± 20.5 31.2 ± 22.8 64.4 ± 11.4 292.9 ± 28.9

DCDI-G 5.3 ± 3.7 12.9 ± 11.5 5.2 ± 3.0 24.3 ± 15.3 15.4 ± 10.3 30.8 ± 18.6 39.2 ± 8.7 173.7 ± 45.6

DCDI-DSF 3.9 ± 4.3 7.1 ± 7.1 7.1 ± 3.6 35.8 ± 12.5 4.3 ± 2.4 18.4 ± 7.3 29.7 ± 12.6 147.8 ± 42.7

Table 4.13. Results for the linear data set with perfect intervention with unknown targets

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID SHD SID SHD SID

DCD 11.5 ± 6.6 18.2 ± 11.8 30.4 ± 3.8 75.5 ± 4.6 39.3 ± 28.4 39.8 ± 33.3 62.7 ± 14.2 241.0 ± 44.8

DCD-no-interv 11.6 ± 8.8 15.8 ± 12.1 21.3 ± 5.2 63.5 ± 12.3 41.7 ± 44.1 36.2 ± 27.1 43.7 ± 9.2 226.1 ± 42.8

DCDI-G 7.6 ± 10.3 5.0 ± 5.4 9.1 ± 3.8 37.5 ± 14.1 41.3 ± 39.2 22.9 ± 15.5 39.9 ± 18.8 153.7 ± 50.3

DCDI-DSF 11.9 ± 8.8 13.8 ± 7.9 6.6 ± 2.6 32.6 ± 14.1 22.3 ± 31.9 33.1 ± 17.5 42.5 ± 18.7 152.9 ± 53.4

Table 4.14. Results for the additive noise model data set with perfect intervention with unknown
targets

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID SHD SID SHD SID

DCD 5.9 ± 6.9 10.9 ± 10.4 15.7 ± 4.9 53.0 ± 9.9 28.7 ± 13.0 29.7 ± 9.3 29.3 ± 8.9 163.1 ± 48.4

DCD-no-interv 11.0 ± 9.3 9.9 ± 11.0 18.4 ± 6.4 56.4 ± 11.0 16.5 ± 22.8 31.9 ± 17.5 31.6 ± 11.3 160.3 ± 46.3

DCDI-G 3.4 ± 4.2 6.9 ± 7.5 3.3 ± 1.3 20.4 ± 10.4 21.8 ± 32.1 20.9 ± 12.3 20.1 ± 8.1 104.6 ± 47.1

DCDI-DSF 7.8 ± 7.9 11.8 ± 5.7 3.3 ± 1.2 23.2 ± 9.1 27.4 ± 30.9 49.3 ± 15.7 22.2 ± 10.4 131.0 ± 41.0

Table 4.15. Results for the nonlinear with non-additive noise data set with perfect intervention with
unknown targets

C.4.3. Unknown interventions.
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C.5. Different kinds of interventions

In this section, we compare DCDI to IGSP using data sets under different kinds of interventions.
We report results in tabular form for 10-node and 20-node graphs. For the perfect interventions,
instead of replacing the target conditional distribution by the marginal N (2, 1) (as in the main
results), we used a marginal that doesn’t involve a mean-shift: U [−1, 1]. The results reported
in Tables 4.16, 4.17, 4.18 of Section C.5.1 are the mean and the standard deviation of SHD and
SID over ten data sets of each condition. From these results, we can conclude that DCDI-G
still outperforms IGSP and, by comparing to DCD (DCDI-G with a loss that doesn’t take into
account interventions), that the proposed loss is still beneficial for this kind of interventions. It has
competitive results compared to GIES and CAM on the linear data set and it outperforms them on
the other data sets.

For imperfect intervention, we tried more modest changes in the parameters. For the linear
data set, an imperfect intervention consisted of adding U [0.5, 1] to wj if wj > 0 and subtracting
if wj ≤ 0. It was done this way to ensure that the intervention would not remove dependencies
between variables. For the additive noise model and the nonlinear with non-additive noise data sets,
N (0, 0.1) was added to each weight of the neural networks. Results are reported in Tables 4.19,
4.20, 4.21 of Section C.5.2. These smaller changes made the difference between DCD and DCDI
imperceptible. For sparse graphs, IGSP has a better or comparable performance to DCDI. For
graphs with higher connectivity, DCDI often has a better performance than IGSP.

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID SHD SID SHD SID

IGSP 4.0 ± 4.8 15.7 ± 15.4 28.8 ± 2.0 72.2 ± 5.1 9.7 ± 8.7 45.1 ± 45.4 68.1 ± 13.6 295.4 ± 27.6

GIES 0.3 ± 0.5 0.0 ± 0.0 4.0 ± 6.5 6.7 ± 17.7 1.5 ± 1.2 0.3 ± 0.9 49.4 ± 22.2 111.9 ± 51.4

CAM 0.6 ± 1.0 0.0 ± 0.0 11.8 ± 4.3 32.2 ± 17.2 6.3 ± 7.4 7.6 ± 9.8 91.4 ± 21.3 181.7 ± 60.5

DCD 6.3 ± 3.4 14.8 ± 10.6 26.1 ± 3.3 66.4 ± 11.4 11.1 ± 4.7 45.8 ± 22.8 49.0 ± 12.0 258.6 ± 41.6

DCDI-G 0.4 ± 0.7 1.3 ± 2.1 7.5 ± 1.4 29.7 ± 8.2 3.2 ± 3.2 12.1 ± 11.2 21.0 ± 4.9 147.6 ± 49.5

Table 4.16. Results for the linear data set with perfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID SHD SID SHD SID

IGSP 5.7 ± 2.3 23.4 ± 13.6 32.8 ± 2.4 79.3 ± 3.2 14.9 ± 8.1 78.8 ± 64.6 80.5 ± 6.4 337.6 ± 27.3

GIES 7.5 ± 5.1 2.3 ± 2.5 9.2 ± 2.9 27.1 ± 11.5 23.8 ± 18.4 3.1 ± 4.4 89.6 ± 14.7 143.9 ± 53.1

CAM 6.3 ± 6.9 0.0 ± 0.0 6.3 ± 3.8 14.6 ± 20.1 9.2 ± 14.3 13.5 ± 25.1 106.2 ± 14.6 96.2 ± 57.9

DCD 6.4 ± 4.6 22.0 ± 14.7 31.1 ± 3.4 77.4 ± 3.1 18.1 ± 8.0 51.5 ± 41.5 55.7 ± 8.3 261.3 ± 22.5

DCDI-G 0.9 ± 1.2 3.9 ± 6.4 5.2 ± 1.9 24.0 ± 9.3 6.5 ± 5.6 17.9 ± 19.1 26.8 ± 7.0 94.4 ± 41.5

Table 4.17. Results for the additive noise model data set with perfect intervention
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10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID SHD SID SHD SID

IGSP 6.6 ± 3.9 25.8 ± 17.9 31.1 ± 3.3 77.1 ± 5.7 14.4 ± 4.8 63.8 ± 26.5 79.7 ± 8.1 341.4 ± 18.1

GIES 6.2 ± 3.5 0.9 ± 1.5 9.5 ± 3.6 29.0 ± 17.7 12.2 ± 2.1 3.4 ± 3.2 63.8 ± 11.1 124.9 ± 36.9

CAM 4.1 ± 3.8 2.3 ± 3.4 11.3 ± 4.2 35.4 ± 20.8 4.2 ± 2.3 10.9 ± 10.3 106.6 ± 15.7 144.2 ± 51.8

DCD 6.6 ± 3.5 18.1 ± 8.1 20.6 ± 3.9 65.8 ± 9.9 9.4 ± 4.9 25.6 ± 16.2 28.6 ± 6.8 188.0 ± 28.7

DCDI-G 2.1 ± 1.5 4.6 ± 5.4 5.0 ± 4.3 28.8 ± 17.6 6.4 ± 3.8 15.1 ± 8.0 12.2 ± 2.7 96.1 ± 18.9

Table 4.18. Results for the nonlinear with non-additive noise data set with perfect intervention

C.5.1. Perfect interventions.

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID SHD SID SHD SID

IGSP 1.1 ± 1.1 5.4 ± 5.4 28.7 ± 3.2 72.4 ± 6.7 4.2 ± 3.9 17.7 ± 12.3 86.1 ± 12.3 289.8 ± 26.3

DCD 3.8 ± 3.6 9.4 ± 6.4 27.7 ± 3.4 74.6 ± 3.5 27.2 ± 22.3 39.3 ± 20.5 65.0 ± 8.0 306.8 ± 26.3

DCDI-G 4.7 ± 4.5 11.5 ± 9.5 27.4 ± 4.9 73.8 ± 5.4 29.6 ± 16.5 37.7 ± 14.5 62.8 ± 6.5 303.2 ± 27.6

DCDI-DSF 4.1 ± 2.3 10.3 ± 7.5 24.3 ± 5.3 69.1 ± 8.7 12.2 ± 2.9 42.6 ± 18.3 56.1 ± 9.2 291.4 ± 35.7

Table 4.19. Results for the linear data set with imperfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID SHD SID SHD SID

IGSP 5.7 ± 4.0 17.4 ± 13.4 30.3 ± 4.0 73.9 ± 11.3 12.5 ± 6.6 44.9 ± 26.7 85.8 ± 4.4 344.0 ± 9.8

DCD 12.0 ± 10.3 11.3 ± 8.4 23.5 ± 2.1 69.7 ± 2.5 39.5 ± 42.3 28.2 ± 13.9 50.9 ± 7.1 247.8 ± 36.6

DCDI-G 12.7 ± 9.1 11.8 ± 6.5 21.7 ± 4.3 65.2 ± 9.2 16.2 ± 18.0 27.8 ± 13.1 46.2 ± 5.9 240.1 ± 26.3

DCDI-DSF 8.1 ± 8.2 15.8 ± 9.3 23.3 ± 6.3 68.7 ± 8.2 12.3 ± 4.1 39.9 ± 19.5 51.0 ± 7.1 257.7 ± 31.6

Table 4.20. Results for the additive noise model data set with imperfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID SHD SID SHD SID

IGSP 7.0 ± 5.7 22.7 ± 19.5 29.4 ± 5.0 74.2 ± 7.3 18.7 ± 7.1 86.3 ± 37.1 81.6 ± 6.9 344.4 ± 20.5

DCD 9.4 ± 8.9 13.3 ± 11.0 15.1 ± 3.7 54.2 ± 9.8 28.5 ± 25.0 25.5 ± 16.8 32.7 ± 9.8 177.1 ± 37.5

DCDI-G 6.7 ± 5.1 13.0 ± 9.7 14.6 ± 3.3 53.9 ± 9.1 28.9 ± 33.7 25.2 ± 15.2 32.3 ± 7.9 177.0 ± 55.8

DCDI-DSF 12.8 ± 9.6 22.9 ± 14.8 14.4 ± 4.8 54.2 ± 10.3 13.3 ± 5.3 54.2 ± 20.9 28.6 ± 8.9 199.5 ± 32.7

Table 4.21. Results for the nonlinear with non-additive noise data set with imperfect intervention

C.5.2. Imperfect interventions.
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Figure 4.12. Log-likelihood on unseen interventional distributions of the nonlinear with non-
additive noise data sets.

C.6. Evaluation on unseen interventional distributions

As advocated by Gentzel et al. [2019], we present interventional performance measures for the
flow cytometry data set of Sachs et al. [2005] and for the nonlinear with non-additive noise data set.
Interventional performance refers to the ability of the causal graph to model the effect of unseen

interventions. To evaluate this, methods are trained on all the data, except for data coming from one
interventional setting. Then, we evaluate the likelihood of the fitted model on the remaining unseen

interventional distribution. Since some algorithms do not model distributions, for each method,
given its estimated causal graph, we fit a distribution using a normalizing flow model, enabling a
fair comparison. We report the log-likelihood evaluated on an unseen intervention. Note that when
evaluating the likelihood, we ignore the conditional of the targeted node.

For the nonlinear data sets with non-additive noise, we report in Figure 4.12 boxplots over 10
dense graphs (e = 4) of 10 nodes. For each graph, one interventional setting was chosen randomly
as the unseen intervention. DCDI-G and DCDI-DSF have the best performance, as was the case for
the SHD and SID.

For Sachs, the data where intervention were applied on the protein Akt were used as the “held-
out” distribution. We report in Figure 4.13 the log-likelihood and its standard deviation over these
data samples. The ordering of the methods is different from the structural metrics: IGSP has the
best performance followed by DCDI-G (whereas CAM seemed to have the best performance with
the structural metrics).

C.7. Comprehensive results of the main experiments

In this section, we report the main results presented in Section 4.4 in tabular form for 10-node and
20-node graphs. Recall that the hyperparameters of DCDI, CAM and GIES were selected to yield
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Figure 4.13. Log-likelihood on an unseen interventional distribution of the Sachs data set.

the best likelihood on a held-out data set. However, this is not possible for IGSP, UTIGSP and JCI-
PC since they do not have a likelihood model. To make sure these algorithms are represented fairly,
we report their performance for different hyperparameter values. For IGSP and UT-IGSP, we report
performance for the cutoff hyperparameter α = {2e−1, 1e−1, 1e−2, 1e−3, 1e−5, 1e−7, 1e−9}.
This range was chosen to be around the cutoff values used in Wang et al. [2017] and Squires et al.
[2020]. We used the same range for JCI-PC, but since most runs with α ≤ 1e − 5 would not
terminate after 12 hours, we only report results with α = {2e − 1, 1e − 1, 1e − 2, 1e − 3}. The
overall ranking of the methods does not change for different hyperparameters. To be even fairer
to these methods, we also report the performance one obtains by selecting, for every data set, the
hyperparameter which yields the lowest SHD. These results are denoted by IGSP*, UTIGSP*
and JCI-PC*. Notice that this is unfair to DCDI, CAM and GIES which have not tuned their
hyperparameters to minimize SHD or SID. Even in this unfair comparison, DCDI remains very
competitive. For IGSP and UTIGSP, we also include results using partial correlation test (indicated
with the suffix -lin) and KCI-test for every data sets. The reported values in the following tables are
the mean and the standard deviation of SHD and SID over ten data sets of each condition. As stated
in the main discussion, our conclusions are similar for 10-node graphs: DCDI has competitive
performance in almost all conditions and outperforms the other methods for graphs with higher
connectivity.
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10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID SHD SID SHD SID

IGSP*-lin 2.2 ± 2.0 11.5 ± 11.4 23.5 ± 1.8 67.3 ± 3.3 4.7 ± 3.7 19.1 ± 13.4 73.4 ± 7.9 291.6 ± 46.4

IGSP* 1.9 ± 1.8 8.9 ± 9.5 24.6 ± 3.3 69.0 ± 10.3 9.2 ± 4.8 42.5 ± 31.8 78.5 ± 6.8 337.0 ± 16.4

IGSP(α=2e-1)-lin 9.3 ± 4.1 18.5 ± 15.6 26.4 ± 3.9 71.2 ± 3.9 37.7 ± 10.7 42.9 ± 37.1 94.6 ± 8.9 271.8 ± 18.3

IGSP(α=1e-1)-lin 5.8 ± 3.5 17.1 ± 13.4 27.4 ± 2.8 71.6 ± 4.0 18.7 ± 4.4 25.9 ± 12.8 84.4 ± 12.2 264.8 ± 27.4

IGSP(α=1e-2)-lin 2.4 ± 2.1 11.8 ± 11.0 27.6 ± 4.2 70.9 ± 8.2 7.2 ± 5.3 22.8 ± 17.3 78.9 ± 10.6 278.7 ± 19.5

IGSP(α=1e-3)-lin 2.4 ± 2.1 11.8 ± 11.0 26.9 ± 4.0 68.3 ± 6.8 8.5 ± 7.2 33.3 ± 29.4 82.4 ± 12.1 304.3 ± 20.4

IGSP(α=1e-5)-lin 2.4 ± 2.1 11.9 ± 11.1 30.6 ± 3.9 74.8 ± 7.0 9.4 ± 5.4 41.1 ± 36.8 83.9 ± 11.1 327.8 ± 9.0

IGSP(α=1e-7)-lin 2.7 ± 2.5 13.8 ± 14.3 33.7 ± 3.3 78.8 ± 4.8 8.6 ± 5.1 44.2 ± 36.0 81.5 ± 10.6 338.7 ± 8.8

IGSP(α=1e-9)-lin 2.6 ± 2.5 13.4 ± 14.6 29.3 ± 3.4 71.0 ± 9.7 11.6 ± 5.1 65.1 ± 45.5 82.0 ± 6.4 341.5 ± 12.2

IGSP(α=2e-1) 8.1 ± 3.4 10.7 ± 11.2 28.6 ± 5.3 74.0 ± 6.3 51.8 ± 10.4 64.7 ± 46.5 102.4 ± 9.8 311.4 ± 13.8

IGSP(α=1e-1) 5.4 ± 2.8 13.1 ± 11.1 26.7 ± 3.7 69.5 ± 11.1 31.0 ± 8.6 52.0 ± 31.9 93.2 ± 8.2 314.3 ± 21.3

IGSP(α=1e-2) 2.5 ± 2.0 10.5 ± 10.3 31.0 ± 3.8 78.2 ± 4.8 12.1 ± 5.1 40.4 ± 22.6 86.8 ± 9.5 336.4 ± 16.4

IGSP(α=1e-3) 2.8 ± 2.5 13.1 ± 13.8 31.3 ± 2.9 76.0 ± 8.1 12.4 ± 4.7 55.6 ± 30.9 84.7 ± 10.1 346.3 ± 8.5

IGSP(α=1e-5) 2.9 ± 2.7 13.8 ± 14.6 33.3 ± 2.5 78.8 ± 7.1 12.9 ± 5.6 64.9 ± 35.3 84.4 ± 6.1 347.7 ± 14.0

IGSP(α=1e-7) 4.1 ± 3.9 15.6 ± 14.9 33.0 ± 3.3 77.7 ± 5.4 15.2 ± 7.2 75.6 ± 43.6 83.9 ± 6.6 350.1 ± 20.4

IGSP(α=1e-9) 4.0 ± 3.6 16.3 ± 17.9 33.6 ± 3.1 76.2 ± 5.6 16.7 ± 6.3 81.9 ± 35.7 83.0 ± 6.7 339.7 ± 13.8

GIES 0.6 ± 1.3 0.0 ± 0.0 2.9 ± 3.0 0.0 ± 0.0 3.2 ± 6.3 1.1 ± 3.5 53.1 ± 25.8 82.9 ± 84.9

CAM 1.9 ± 2.6 1.7 ± 3.1 10.6 ± 3.1 34.5 ± 11.0 5.4 ± 7.9 8.2 ± 9.6 91.1 ± 21.7 167.8 ± 55.4

DCDI-G 1.3 ± 1.9 0.8 ± 1.8 3.3 ± 2.1 10.7 ± 12.0 5.4 ± 4.5 13.4 ± 12.0 23.7 ± 5.6 112.8 ± 41.8

DCDI-DSF 0.9 ± 1.3 0.6 ± 1.9 3.7 ± 2.3 18.9 ± 14.1 3.6 ± 2.7 6.0 ± 5.4 16.6 ± 6.4 92.5 ± 40.1

Table 4.22. Results for linear data set with perfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID SHD SID SHD SID

IGSP*-lin 7.7 ± 2.4 24.1 ± 11.1 22.5 ± 2.0 64.4 ± 6.3 14.2 ± 5.2 58.6 ± 37.5 75.9 ± 3.1 307.1 ± 25.0

IGSP* 5.3 ± 3.0 20.9 ± 13.9 25.8 ± 2.8 68.0 ± 9.4 13.6 ± 6.6 69.6 ± 47.9 76.7 ± 6.5 332.6 ± 18.2

IGSP(α=2e-1)-lin 17.0 ± 5.2 25.0 ± 13.1 27.3 ± 3.3 69.2 ± 7.0 56.3 ± 10.5 78.3 ± 47.5 125.3 ± 7.9 282.9 ± 27.2

IGSP(α=1e-1)-lin 13.2 ± 5.3 21.1 ± 9.8 27.3 ± 4.4 69.4 ± 5.6 42.0 ± 11.9 73.4 ± 37.5 115.8 ± 11.6 286.0 ± 34.6

IGSP(α=1e-2)-lin 11.4 ± 4.6 26.4 ± 13.9 27.8 ± 3.4 72.4 ± 4.2 21.5 ± 9.6 64.7 ± 42.0 101.0 ± 10.1 298.6 ± 20.2

IGSP(α=1e-3)-lin 10.4 ± 3.9 26.6 ± 11.8 26.9 ± 2.9 70.2 ± 7.3 19.0 ± 8.0 58.1 ± 34.2 93.2 ± 4.8 308.5 ± 18.3

IGSP(α=1e-5)-lin 9.7 ± 2.3 27.4 ± 8.8 28.2 ± 3.9 70.2 ± 9.9 20.1 ± 8.6 84.9 ± 49.1 82.9 ± 5.3 312.9 ± 19.6

IGSP(α=1e-7)-lin 9.2 ± 2.3 28.1 ± 10.4 27.9 ± 3.8 72.5 ± 8.2 16.1 ± 5.2 63.5 ± 37.3 84.1 ± 8.6 322.1 ± 22.4

IGSP(α=1e-9)-lin 9.8 ± 2.4 31.5 ± 12.3 30.9 ± 4.7 77.7 ± 5.4 17.2 ± 6.3 73.1 ± 37.3 78.7 ± 5.7 314.8 ± 23.9

IGSP(α=2e-1) 13.3 ± 4.9 23.2 ± 15.9 28.4 ± 3.3 71.5 ± 8.3 43.2 ± 7.6 55.8 ± 30.0 98.0 ± 11.2 302.3 ± 34.7

IGSP(α=1e-1) 9.7 ± 5.3 21.8 ± 14.6 29.0 ± 2.9 73.4 ± 4.9 30.6 ± 6.4 64.7 ± 41.5 88.9 ± 9.2 320.9 ± 16.2

IGSP(α=1e-2) 7.3 ± 3.3 21.9 ± 11.3 31.4 ± 2.5 74.3 ± 9.7 17.2 ± 6.0 74.7 ± 40.2 84.1 ± 10.1 322.8 ± 15.8

IGSP(α=1e-3) 7.8 ± 3.4 24.2 ± 12.1 29.6 ± 3.8 75.1 ± 5.6 16.5 ± 8.9 79.6 ± 53.6 85.1 ± 7.7 334.2 ± 22.0

IGSP(α=1e-5) 8.1 ± 4.0 29.2 ± 15.3 30.5 ± 4.2 77.3 ± 4.7 16.6 ± 6.6 79.7 ± 50.3 81.2 ± 8.2 324.4 ± 26.0

IGSP(α=1e-7) 7.3 ± 2.8 28.5 ± 11.1 33.0 ± 1.8 78.3 ± 4.0 15.3 ± 6.2 75.0 ± 45.4 82.5 ± 6.8 334.3 ± 22.8

IGSP(α=1e-9) 9.4 ± 5.2 34.3 ± 15.6 30.9 ± 3.9 73.7 ± 10.3 15.3 ± 6.7 78.2 ± 50.6 81.6 ± 10.8 333.4 ± 17.2

GIES 9.1 ± 8.5 1.8 ± 3.6 9.0 ± 2.7 23.8 ± 15.6 40.3 ± 61.0 7.5 ± 7.2 103.2 ± 18.6 120.1 ± 68.5

CAM 5.2 ± 3.0 1.0 ± 1.9 8.5 ± 3.7 11.5 ± 13.4 7.5 ± 6.0 5.6 ± 4.9 105.7 ± 13.2 108.7 ± 61.0

DCDI-G 5.2 ± 7.5 2.4 ± 4.9 4.3 ± 2.4 16.0 ± 11.9 21.8 ± 30.1 11.6 ± 13.1 35.2 ± 13.2 109.8 ± 44.6

DCDI-DSF 4.2 ± 5.6 5.6 ± 5.5 5.5 ± 2.4 23.9 ± 14.3 4.3 ± 1.9 19.7 ± 12.6 26.7 ± 16.9 105.3 ± 22.7

Table 4.23. Results for the additive noise model data set with perfect intervention
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10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID SHD SID SHD SID

IGSP*-lin 4.4 ± 2.6 15.2 ± 11.0 23.3 ± 1.9 66.0 ± 7.9 13.4 ± 3.2 67.4 ± 27.8 67.0 ± 9.6 318.4 ± 19.1

IGSP* 4.1 ± 2.8 13.6 ± 11.9 25.4 ± 3.8 69.4 ± 5.3 15.3 ± 4.5 73.0 ± 28.8 72.7 ± 9.6 329.4 ± 21.5

IGSP(α=2e-1)-lin 12.4 ± 4.5 15.2 ± 9.1 27.6 ± 3.9 70.1 ± 6.3 51.4 ± 9.1 72.5 ± 31.1 102.2 ± 11.5 297.1 ± 27.5

IGSP(α=1e-1)-lin 9.7 ± 4.7 17.5 ± 13.4 26.5 ± 3.1 68.5 ± 8.1 35.8 ± 9.2 83.4 ± 35.1 93.6 ± 10.2 293.9 ± 25.3

IGSP(α=1e-2)-lin 7.1 ± 3.4 16.4 ± 12.5 28.7 ± 2.7 72.7 ± 4.9 19.0 ± 5.1 73.7 ± 33.7 76.0 ± 12.9 315.7 ± 14.2

IGSP(α=1e-3)-lin 5.9 ± 3.5 15.9 ± 10.5 29.6 ± 3.0 75.0 ± 2.8 16.4 ± 4.4 77.1 ± 32.2 75.0 ± 11.0 325.1 ± 17.7

IGSP(α=1e-5)-lin 6.6 ± 3.0 21.1 ± 12.3 27.7 ± 3.4 73.6 ± 4.8 15.9 ± 5.7 79.6 ± 22.5 73.3 ± 12.7 323.2 ± 16.0

IGSP(α=1e-7)-lin 7.2 ± 4.3 24.3 ± 15.9 30.1 ± 4.1 75.4 ± 5.9 17.3 ± 3.9 84.1 ± 22.1 73.2 ± 11.2 325.5 ± 23.1

IGSP(α=1e-9)-lin 5.9 ± 3.5 20.9 ± 16.1 31.3 ± 2.1 76.6 ± 4.0 19.2 ± 4.2 94.4 ± 29.9 77.4 ± 11.3 347.2 ± 15.5

IGSP(α=2e-1) 10.6 ± 2.7 12.4 ± 4.9 27.0 ± 3.0 70.8 ± 4.1 48.2 ± 7.7 97.5 ± 29.8 89.5 ± 15.5 306.3 ± 17.1

IGSP(α=1e-1) 7.7 ± 4.1 12.1 ± 8.8 27.5 ± 5.0 73.0 ± 5.2 32.3 ± 7.1 87.5 ± 39.9 89.4 ± 16.4 325.4 ± 21.6

IGSP(α=1e-2) 5.4 ± 2.5 15.3 ± 6.4 29.5 ± 3.5 74.2 ± 4.9 19.5 ± 5.2 82.5 ± 38.5 83.0 ± 9.5 337.3 ± 15.9

IGSP(α=1e-3) 6.6 ± 4.1 21.7 ± 14.5 31.3 ± 3.8 75.9 ± 7.7 17.3 ± 6.1 83.3 ± 36.2 80.4 ± 11.9 331.0 ± 23.7

IGSP(α=1e-5) 6.3 ± 3.1 19.8 ± 12.1 34.0 ± 4.2 76.8 ± 12.0 19.3 ± 4.6 90.8 ± 32.6 77.0 ± 9.5 345.2 ± 9.8

IGSP(α=1e-7) 6.3 ± 3.3 21.4 ± 13.1 34.1 ± 1.9 78.5 ± 8.4 19.1 ± 4.0 91.6 ± 29.0 75.8 ± 11.1 344.4 ± 16.6

IGSP(α=1e-9) 5.9 ± 3.7 21.7 ± 15.9 34.6 ± 2.6 79.7 ± 6.2 18.8 ± 3.9 94.0 ± 33.8 77.5 ± 9.0 341.4 ± 24.5

GIES 4.4 ± 6.1 1.0 ± 1.6 7.9 ± 4.7 25.5 ± 13.2 26.9 ± 50.5 9.5 ± 7.4 80.1 ± 36.2 96.7 ± 59.1

CAM 1.8 ± 1.5 2.8 ± 4.4 7.9 ± 3.6 26.7 ± 19.0 6.1 ± 5.2 18.1 ± 16.3 101.8 ± 24.5 142.5 ± 49.1

DCDI-G 2.3 ± 3.6 2.7 ± 3.3 2.4 ± 1.6 13.9 ± 8.5 13.9 ± 20.3 13.7 ± 8.1 16.8 ± 8.7 82.5 ± 38.1

DCDI-DSF 7.0 ± 10.7 7.8 ± 5.8 1.6 ± 1.6 7.7 ± 13.8 8.3 ± 4.1 32.4 ± 17.3 11.8 ± 2.1 102.3 ± 34.5

Table 4.24. Results for the nonlinear with non-additive noise data set with perfect intervention

C.7.1. Perfect interventions.

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID SHD SID SHD SID

IGSP*-lin 2.1 ± 0.9 11.7 ± 6.7 20.7 ± 5.8 61.4 ± 11.0 4.0 ± 2.9 17.9 ± 12.9 62.2 ± 12.0 256.8 ± 35.5

IGSP* 3.4 ± 1.8 14.9 ± 12.4 24.1 ± 2.5 68.9 ± 9.3 8.0 ± 5.7 43.8 ± 33.6 75.3 ± 9.2 338.3 ± 22.3

IGSP(α=2e-1)-lin 8.5 ± 2.7 15.5 ± 8.0 23.2 ± 7.3 65.8 ± 11.3 45.3 ± 9.5 48.0 ± 28.4 86.1 ± 15.0 253.7 ± 29.8

IGSP(α=1e-1)-lin 4.5 ± 3.3 15.3 ± 10.8 24.4 ± 6.6 65.4 ± 12.6 23.4 ± 9.9 47.3 ± 31.8 80.5 ± 13.7 259.4 ± 27.2

IGSP(α=1e-2)-lin 2.8 ± 1.9 12.8 ± 6.6 26.1 ± 4.8 69.7 ± 8.8 6.6 ± 4.4 20.2 ± 13.3 68.2 ± 13.7 279.2 ± 22.4

IGSP(α=1e-3)-lin 3.9 ± 2.8 17.2 ± 9.1 26.4 ± 5.6 71.1 ± 9.7 7.0 ± 5.9 33.2 ± 26.3 70.6 ± 16.2 296.3 ± 20.8

IGSP(α=1e-5)-lin 4.3 ± 2.6 21.4 ± 13.4 29.2 ± 5.1 75.3 ± 7.4 8.1 ± 5.0 45.4 ± 39.9 75.5 ± 7.7 325.3 ± 21.3

IGSP(α=1e-7)-lin 3.4 ± 1.3 19.1 ± 10.1 29.1 ± 3.9 74.8 ± 6.6 10.7 ± 5.1 52.8 ± 33.3 77.9 ± 9.2 333.1 ± 16.7

IGSP(α=1e-9)-lin 4.6 ± 3.3 23.7 ± 20.4 31.3 ± 4.1 79.1 ± 5.7 10.5 ± 5.0 61.6 ± 33.9 78.0 ± 8.1 343.4 ± 23.9

IGSP(α=2e-1) 9.5 ± 3.6 21.5 ± 13.6 27.7 ± 5.4 70.9 ± 10.4 46.9 ± 10.3 64.1 ± 34.6 95.5 ± 8.6 306.0 ± 20.0

IGSP(α=1e-1) 5.6 ± 2.2 15.9 ± 16.0 26.8 ± 5.3 68.8 ± 9.8 32.3 ± 9.6 54.3 ± 30.5 89.0 ± 9.7 315.5 ± 20.6

IGSP(α=1e-2) 5.0 ± 2.8 20.2 ± 15.3 32.0 ± 3.2 76.3 ± 5.3 11.8 ± 9.1 48.8 ± 43.6 82.7 ± 12.5 339.2 ± 11.7

IGSP(α=1e-3) 4.0 ± 2.7 19.9 ± 14.3 31.0 ± 4.1 76.4 ± 6.8 10.8 ± 6.0 56.6 ± 32.3 82.6 ± 8.6 347.3 ± 8.3

IGSP(α=1e-5) 5.4 ± 4.4 23.3 ± 19.8 30.9 ± 4.1 80.4 ± 2.9 12.7 ± 6.9 71.2 ± 41.5 80.3 ± 9.6 347.6 ± 12.6

IGSP(α=1e-7) 5.1 ± 2.4 21.6 ± 12.7 31.4 ± 2.7 79.5 ± 3.4 13.8 ± 7.4 80.4 ± 42.1 82.2 ± 7.3 351.0 ± 13.7

IGSP(α=1e-9) 6.5 ± 3.3 28.0 ± 18.4 30.6 ± 3.9 78.3 ± 4.4 15.3 ± 7.7 80.3 ± 45.2 83.0 ± 8.8 351.4 ± 8.6

GIES 13.7 ± 11.9 20.9 ± 19.4 14.2 ± 7.1 47.1 ± 16.8 33.7 ± 48.8 20.8 ± 22.4 78.7 ± 40.4 194.1 ± 61.0

CAM 8.1 ± 6.2 22.6 ± 18.8 19.4 ± 4.7 56.0 ± 10.1 10.5 ± 5.8 36.3 ± 23.6 111.7 ± 16.5 232.5 ± 23.4

DCDI-G 2.7 ± 2.8 8.2 ± 8.8 5.2 ± 3.5 25.1 ± 12.9 10.8 ± 12.0 27.0 ± 21.3 34.7 ± 7.1 188.0 ± 48.8

DCDI-DSF 1.3 ± 1.3 4.2 ± 4.0 1.7 ± 2.4 10.2 ± 14.9 7.0 ± 4.0 21.0 ± 12.5 18.9 ± 5.9 133.6 ± 33.9

Table 4.25. Results for the linear data set with imperfect intervention
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10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID SHD SID SHD SID

IGSP*-lin 9.1 ± 4.4 23.6 ± 12.7 22.8 ± 4.6 62.0 ± 9.7 18.1 ± 6.0 67.5 ± 26.2 81.2 ± 8.8 322.9 ± 13.8

IGSP* 6.2 ± 3.4 15.8 ± 9.9 27.6 ± 2.3 67.2 ± 8.7 17.0 ± 3.9 79.7 ± 33.9 75.7 ± 7.4 321.0 ± 23.8

IGSP(α=2e-1)-lin 19.7 ± 3.4 29.9 ± 14.9 26.0 ± 5.0 67.0 ± 11.7 59.0 ± 11.9 87.0 ± 40.0 123.7 ± 10.4 279.5 ± 27.6

IGSP(α=1e-1)-lin 17.8 ± 5.5 35.4 ± 14.1 26.1 ± 5.5 68.9 ± 9.5 40.1 ± 12.0 71.4 ± 39.3 119.2 ± 10.8 285.5 ± 21.3

IGSP(α=1e-2)-lin 13.0 ± 4.7 28.1 ± 12.0 27.7 ± 3.0 70.0 ± 5.8 24.9 ± 9.9 67.1 ± 35.0 109.6 ± 11.6 291.6 ± 29.8

IGSP(α=1e-3)-lin 13.1 ± 6.0 30.6 ± 16.0 28.7 ± 3.6 71.8 ± 6.2 24.4 ± 9.0 68.8 ± 24.9 96.5 ± 10.6 303.7 ± 17.3

IGSP(α=1e-5)-lin 11.5 ± 7.3 31.0 ± 17.4 28.8 ± 6.0 69.6 ± 12.8 21.6 ± 5.1 81.3 ± 32.2 90.4 ± 10.8 314.1 ± 15.3

IGSP(α=1e-7)-lin 10.6 ± 5.8 31.0 ± 15.8 29.5 ± 5.0 74.1 ± 8.1 23.3 ± 5.1 93.2 ± 35.9 84.2 ± 8.9 329.3 ± 15.6

IGSP(α=1e-9)-lin 11.0 ± 6.4 34.0 ± 20.7 29.7 ± 2.8 69.7 ± 9.5 21.3 ± 5.7 86.3 ± 29.7 83.4 ± 8.1 328.5 ± 19.2

IGSP(α=2e-1) 11.4 ± 4.2 23.8 ± 16.0 29.0 ± 3.2 72.1 ± 7.5 48.0 ± 8.3 77.8 ± 42.6 97.5 ± 12.8 307.5 ± 23.7

IGSP(α=1e-1) 10.6 ± 5.1 26.2 ± 15.8 31.3 ± 3.3 73.7 ± 7.1 36.9 ± 6.1 86.9 ± 42.6 88.8 ± 11.1 318.5 ± 25.8

IGSP(α=1e-2) 9.1 ± 4.4 24.3 ± 11.5 32.4 ± 4.1 76.9 ± 6.8 20.9 ± 6.2 84.8 ± 39.9 86.1 ± 8.4 334.3 ± 14.2

IGSP(α=1e-3) 8.2 ± 4.5 24.5 ± 13.5 32.7 ± 2.2 78.2 ± 8.3 19.3 ± 4.4 78.8 ± 32.2 82.9 ± 5.7 325.1 ± 19.7

IGSP(α=1e-5) 8.0 ± 3.8 25.8 ± 14.2 33.8 ± 2.4 79.4 ± 4.1 21.4 ± 5.4 91.8 ± 40.5 83.1 ± 7.8 343.4 ± 14.3

IGSP(α=1e-7) 8.4 ± 4.3 27.6 ± 15.3 33.2 ± 1.9 78.1 ± 5.9 20.3 ± 4.7 87.2 ± 39.6 85.6 ± 7.4 334.9 ± 25.2

IGSP(α=1e-9) 8.4 ± 4.5 28.3 ± 16.3 34.4 ± 3.4 79.9 ± 4.4 19.6 ± 3.1 90.1 ± 33.1 79.1 ± 7.4 332.5 ± 20.9

GIES 19.9 ± 10.4 23.0 ± 10.1 18.9 ± 6.0 59.5 ± 11.2 74.4 ± 59.8 56.4 ± 43.1 112.2 ± 23.8 245.2 ± 36.1

CAM 11.2 ± 9.3 7.8 ± 8.7 9.6 ± 3.0 25.2 ± 10.8 16.3 ± 9.9 26.7 ± 27.2 121.9 ± 11.6 155.4 ± 41.5

DCDI-G 6.2 ± 5.4 7.6 ± 11.0 13.1 ± 2.9 48.1 ± 9.1 26.0 ± 34.6 23.3 ± 25.7 36.4 ± 13.4 88.5 ± 43.8

DCDI-DSF 13.4 ± 8.4 17.9 ± 10.5 14.4 ± 2.4 53.2 ± 8.2 15.2 ± 2.7 49.4 ± 26.7 44.6 ± 15.4 149.8 ± 26.0

Table 4.26. Results for the additive noise model data set with imperfect intervention

10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID SHD SID SHD SID

IGSP*-lin 5.6 ± 3.6 23.0 ± 19.6 22.5 ± 2.9 63.4 ± 6.7 13.8 ± 6.9 86.0 ± 71.7 65.1 ± 12.0 315.4 ± 46.2

IGSP* 5.1 ± 4.3 20.8 ± 16.5 24.3 ± 2.9 69.1 ± 5.5 18.2 ± 7.9 100.3 ± 74.7 71.7 ± 5.2 331.7 ± 35.9

IGSP(α=2e-1)-lin 14.1 ± 6.1 30.8 ± 21.8 26.9 ± 4.1 70.1 ± 5.8 49.7 ± 13.2 89.7 ± 64.3 100.2 ± 8.8 297.2 ± 13.9

IGSP(α=1e-1)-lin 9.8 ± 4.8 24.9 ± 23.0 25.5 ± 4.6 68.1 ± 7.1 39.7 ± 12.3 104.9 ± 62.7 90.2 ± 13.0 289.0 ± 32.7

IGSP(α=1e-2)-lin 8.0 ± 4.4 29.6 ± 22.6 26.4 ± 3.8 69.9 ± 4.0 18.1 ± 8.2 88.6 ± 58.7 70.6 ± 13.0 301.0 ± 40.9

IGSP(α=1e-3)-lin 7.6 ± 4.8 26.9 ± 22.4 28.4 ± 2.3 73.7 ± 3.7 16.3 ± 8.8 88.5 ± 72.6 72.9 ± 8.7 326.0 ± 18.1

IGSP(α=1e-5)-lin 7.7 ± 5.3 29.2 ± 24.7 27.2 ± 4.0 69.3 ± 8.6 18.9 ± 6.9 112.2 ± 64.6 70.7 ± 9.8 320.2 ± 27.6

IGSP(α=1e-7)-lin 6.7 ± 4.6 26.3 ± 19.9 28.8 ± 3.9 73.1 ± 5.8 16.8 ± 7.2 106.1 ± 63.8 72.6 ± 9.9 338.0 ± 17.2

IGSP(α=1e-9)-lin 7.7 ± 4.3 29.2 ± 17.9 30.0 ± 3.2 74.4 ± 7.4 17.7 ± 6.8 119.8 ± 77.9 72.3 ± 9.6 337.1 ± 23.8

IGSP(α=2e-1) 12.5 ± 5.5 27.9 ± 21.0 26.7 ± 4.4 71.7 ± 4.2 52.9 ± 6.6 113.0 ± 64.2 91.7 ± 7.6 311.0 ± 15.9

IGSP(α=1e-1) 9.5 ± 5.4 26.7 ± 24.0 26.2 ± 4.7 70.6 ± 6.4 37.1 ± 10.1 113.0 ± 79.7 79.5 ± 9.0 318.2 ± 30.3

IGSP(α=1e-2) 7.3 ± 4.5 26.9 ± 19.4 28.4 ± 3.3 73.9 ± 4.3 20.9 ± 7.7 100.1 ± 71.9 77.5 ± 7.5 324.7 ± 28.7

IGSP(α=1e-3) 7.4 ± 5.2 29.8 ± 21.8 29.6 ± 2.9 76.0 ± 3.0 22.4 ± 7.8 125.9 ± 89.4 76.2 ± 7.6 343.4 ± 21.3

IGSP(α=1e-5) 6.6 ± 5.1 24.9 ± 20.4 31.0 ± 2.4 76.5 ± 4.7 19.6 ± 8.4 114.6 ± 79.9 74.4 ± 5.4 335.7 ± 24.3

IGSP(α=1e-7) 6.8 ± 5.2 25.5 ± 20.2 32.6 ± 3.3 77.7 ± 7.2 21.3 ± 10.0 129.2 ± 92.4 76.4 ± 5.6 341.0 ± 26.0

IGSP(α=1e-9) 6.8 ± 4.4 25.7 ± 18.9 33.0 ± 2.4 77.2 ± 6.7 21.3 ± 9.1 127.6 ± 92.8 76.8 ± 6.5 348.4 ± 18.5

GIES 13.2 ± 11.2 16.7 ± 13.9 18.1 ± 5.6 53.7 ± 15.0 36.8 ± 41.1 67.0 ± 46.3 92.7 ± 29.4 215.8 ± 63.9

CAM 4.3 ± 3.3 9.3 ± 6.8 14.7 ± 5.1 45.7 ± 14.9 20.7 ± 16.2 53.9 ± 32.9 121.5 ± 9.3 194.1 ± 40.3

DCDI-G 3.9 ± 3.9 7.5 ± 6.5 7.4 ± 2.7 29.8 ± 11.0 10.0 ± 14.0 39.2 ± 41.5 20.9 ± 7.2 124.0 ± 39.0

DCDI-DSF 5.3 ± 4.2 16.3 ± 10.0 5.6 ± 3.1 32.4 ± 14.6 12.4 ± 5.3 70.3 ± 55.2 16.4 ± 4.9 139.7 ± 42.6

Table 4.27. Results for the nonlinear with non-additive noise data set with imperfect intervention

C.7.2. Imperfect interventions.
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10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID SHD SID SHD SID

UTIGSP*-lin 0.7 ± 1.6 3.4 ± 8.4 21.1 ± 3.6 62.9 ± 6.0 3.9 ± 3.6 14.6 ± 9.1 67.9 ± 10.8 271.6 ± 38.6

UTIGSP* 1.7 ± 2.0 7.4 ± 10.7 25.8 ± 2.5 67.4 ± 8.7 14.3 ± 4.8 65.5 ± 32.2 77.9 ± 5.5 332.2 ± 19.7

UTIGSP(α=2e-1)-lin 7.7 ± 3.7 15.1 ± 15.4 24.5 ± 6.1 67.6 ± 8.0 37.6 ± 10.2 44.4 ± 32.6 95.9 ± 9.7 265.6 ± 24.5

UTIGSP(α=1e-1)-lin 3.7 ± 3.2 10.2 ± 12.6 26.4 ± 2.9 68.9 ± 6.5 18.4 ± 5.1 16.8 ± 7.4 83.4 ± 13.1 255.8 ± 20.3

UTIGSP(α=1e-2)-lin 1.7 ± 2.1 7.0 ± 9.3 27.2 ± 5.8 70.1 ± 9.8 4.6 ± 4.0 13.9 ± 11.1 70.1 ± 12.0 271.2 ± 19.9

UTIGSP(α=1e-3)-lin 1.6 ± 2.2 7.2 ± 10.1 29.6 ± 5.5 73.1 ± 9.4 6.9 ± 6.5 25.6 ± 31.6 81.0 ± 12.7 301.1 ± 17.6

UTIGSP(α=1e-5)-lin 1.2 ± 1.9 5.1 ± 8.7 29.4 ± 4.2 73.2 ± 7.1 8.8 ± 6.0 36.7 ± 29.9 81.5 ± 11.7 323.1 ± 14.1

UTIGSP(α=1e-7)-lin 1.8 ± 2.6 7.6 ± 13.4 29.4 ± 3.4 72.3 ± 9.6 8.8 ± 5.5 43.3 ± 40.1 84.8 ± 9.7 339.6 ± 11.8

UTIGSP(α=1e-9)-lin 1.8 ± 2.4 7.8 ± 13.5 29.2 ± 3.8 70.2 ± 7.5 11.6 ± 7.3 57.3 ± 48.4 81.2 ± 5.7 339.4 ± 13.7

UTIGSP(α=2e-1) 8.5 ± 3.0 9.6 ± 8.6 27.8 ± 4.7 70.7 ± 10.4 50.3 ± 15.2 65.1 ± 49.2 106.7 ± 9.7 315.7 ± 24.0

UTIGSP(α=1e-1) 6.2 ± 3.2 13.0 ± 10.9 30.5 ± 2.4 74.3 ± 6.7 32.5 ± 7.0 57.5 ± 35.9 97.4 ± 9.8 317.5 ± 22.1

UTIGSP(α=1e-2) 2.6 ± 2.7 8.6 ± 9.7 30.4 ± 4.0 74.6 ± 7.3 17.9 ± 5.6 60.5 ± 27.1 85.9 ± 8.1 328.2 ± 20.1

UTIGSP(α=1e-3) 2.7 ± 2.2 9.3 ± 10.2 32.1 ± 3.0 78.1 ± 4.6 16.9 ± 6.5 70.2 ± 34.1 83.2 ± 8.6 341.4 ± 8.0

UTIGSP(α=1e-5) 4.3 ± 2.6 15.2 ± 11.5 31.5 ± 2.2 78.4 ± 8.0 17.0 ± 6.6 82.8 ± 37.4 82.2 ± 5.2 344.2 ± 14.1

UTIGSP(α=1e-7) 5.0 ± 3.9 18.2 ± 16.6 32.0 ± 2.8 77.1 ± 5.9 19.5 ± 6.9 89.7 ± 37.7 82.8 ± 4.9 346.0 ± 17.4

UTIGSP(α=1e-9) 6.0 ± 3.7 22.2 ± 18.0 31.7 ± 3.8 73.6 ± 7.1 18.8 ± 6.7 87.4 ± 41.2 81.4 ± 5.7 345.8 ± 15.4

JCI-PC* 5.7 ± 2.6 23.6 ± 13.2 35.9 ± 1.7 83.0 ± 6.5 13.1 ± 3.5 77.4 ± 22.2 76.2 ± 7.0 341.9 ± 22.5

JCI-PC(α=2e-1) 7.4 ± 2.1 28.4 ± 13.8 36.1 ± 1.8 83.2 ± 6.7 17.6 ± 4.2 84.9 ± 26.2 76.2 ± 7.0 341.9 ± 22.5

JCI-PC(α=1e-1) 6.9 ± 2.0 26.2 ± 13.0 36.1 ± 1.8 83.2 ± 6.7 15.2 ± 3.7 83.1 ± 25.3 76.2 ± 7.0 341.9 ± 22.5

JCI-PC(α=1e-2) 5.9 ± 2.3 23.6 ± 13.2 36.1 ± 1.8 83.2 ± 6.7 13.4 ± 3.4 79.0 ± 23.1 76.2 ± 7.0 341.9 ± 22.5

JCI-PC(α=1e-3) 5.7 ± 2.6 23.6 ± 13.2 36.1 ± 1.8 83.2 ± 6.7 13.1 ± 3.5 77.4 ± 22.2 76.2 ± 7.0 341.9 ± 22.5

DCDI-G 10.1 ± 4.2 12.4 ± 8.6 16.4 ± 5.3 52.3 ± 15.2 14.3 ± 18.8 23.3 ± 13.6 59.9 ± 10.5 237.6 ± 40.8

DCDI-DSF 4.4 ± 5.3 9.4 ± 9.4 9.3 ± 4.0 36.9 ± 11.9 4.9 ± 3.1 20.0 ± 12.0 32.5 ± 7.8 161.3 ± 37.1

Table 4.28. Results for the linear data set with perfect intervention with unknown targets
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10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID SHD SID SHD SID

UTIGSP*-lin 7.1 ± 2.3 20.5 ± 12.5 22.6 ± 3.0 59.2 ± 12.6 14.1 ± 4.8 56.8 ± 32.0 76.4 ± 5.7 312.5 ± 24.3

UTIGSP* 7.0 ± 4.3 20.6 ± 13.7 24.9 ± 2.3 70.8 ± 5.9 16.8 ± 7.0 87.1 ± 52.7 77.9 ± 6.6 333.4 ± 18.7

UTIGSP(α=2e-1)-lin 16.9 ± 4.1 24.2 ± 12.5 25.9 ± 5.0 66.5 ± 9.3 58.0 ± 10.8 73.7 ± 31.9 125.5 ± 11.0 275.8 ± 23.0

UTIGSP(α=1e-1)-lin 13.8 ± 6.0 20.8 ± 15.0 26.9 ± 4.1 67.1 ± 11.8 40.0 ± 11.7 67.0 ± 50.1 117.9 ± 6.3 290.7 ± 16.1

UTIGSP(α=1e-2)-lin 11.2 ± 4.3 25.2 ± 13.1 26.4 ± 4.6 66.5 ± 13.4 20.5 ± 10.5 54.8 ± 41.6 101.5 ± 7.6 298.6 ± 19.3

UTIGSP(α=1e-3)-lin 10.3 ± 3.7 28.1 ± 13.2 26.2 ± 3.6 64.6 ± 7.5 17.3 ± 7.2 47.6 ± 24.4 94.5 ± 7.9 306.8 ± 20.1

UTIGSP(α=1e-5)-lin 9.3 ± 2.5 27.4 ± 9.8 29.0 ± 3.7 73.0 ± 5.4 18.3 ± 6.9 73.0 ± 42.4 87.9 ± 7.8 325.2 ± 14.9

UTIGSP(α=1e-7)-lin 8.1 ± 2.1 24.9 ± 11.6 28.2 ± 3.7 72.4 ± 8.6 16.6 ± 5.7 65.8 ± 40.3 80.2 ± 8.4 316.4 ± 22.1

UTIGSP(α=1e-9)-lin 8.2 ± 2.8 27.5 ± 10.7 30.7 ± 3.9 76.7 ± 5.3 16.7 ± 5.9 70.2 ± 42.0 78.3 ± 4.0 318.9 ± 20.7

UTIGSP(α=2e-1) 13.5 ± 3.9 22.2 ± 17.2 27.6 ± 3.7 73.7 ± 3.5 45.6 ± 9.3 66.2 ± 43.7 98.6 ± 10.0 297.3 ± 36.4

UTIGSP(α=1e-1) 10.6 ± 6.1 20.1 ± 12.8 26.7 ± 2.9 71.9 ± 6.7 31.3 ± 5.3 68.3 ± 45.8 87.8 ± 10.0 301.0 ± 35.3

UTIGSP(α=1e-2) 9.1 ± 4.2 25.3 ± 10.3 29.0 ± 2.6 73.1 ± 3.1 20.8 ± 7.6 97.6 ± 53.0 84.4 ± 9.6 328.2 ± 17.4

UTIGSP(α=1e-3) 10.4 ± 4.1 28.1 ± 12.9 30.5 ± 4.7 77.8 ± 5.4 18.6 ± 7.0 84.5 ± 45.4 83.6 ± 5.3 335.0 ± 25.3

UTIGSP(α=1e-5) 9.9 ± 4.3 33.6 ± 12.0 32.1 ± 3.9 77.4 ± 6.7 19.5 ± 6.6 95.6 ± 50.9 81.9 ± 7.1 341.3 ± 12.1

UTIGSP(α=1e-7) 9.4 ± 4.9 33.3 ± 14.4 33.7 ± 3.9 76.8 ± 9.4 18.5 ± 6.9 92.3 ± 49.0 83.3 ± 8.1 337.5 ± 21.5

UTIGSP(α=1e-9) 9.4 ± 5.2 32.1 ± 15.2 33.0 ± 4.2 77.7 ± 8.7 18.7 ± 6.8 93.8 ± 52.0 82.9 ± 7.0 329.4 ± 28.2

JCI-PC* 8.5 ± 2.7 33.6 ± 12.0 35.5 ± 3.0 76.5 ± 8.7 15.2 ± 5.0 90.8 ± 52.1 72.4 ± 5.4 330.6 ± 12.8

JCI-PC(α=2e-1) 10.2 ± 3.3 35.8 ± 13.1 35.5 ± 3.0 75.6 ± 8.0 21.0 ± 3.6 92.0 ± 49.6 72.9 ± 5.4 328.7 ± 13.8

JCI-PC(α=1e-1) 9.5 ± 3.0 35.2 ± 12.9 35.5 ± 3.0 75.6 ± 8.0 17.5 ± 3.8 91.2 ± 51.2 72.9 ± 5.4 328.7 ± 13.8

JCI-PC(α=1e-2) 9.1 ± 3.0 35.4 ± 13.8 35.5 ± 3.0 75.6 ± 8.0 15.2 ± 5.0 90.8 ± 52.1 72.5 ± 5.4 330.5 ± 12.9

JCI-PC(α=1e-3) 8.6 ± 2.8 33.7 ± 12.1 35.5 ± 3.0 75.6 ± 8.0 15.2 ± 5.0 90.8 ± 52.1 72.4 ± 5.4 330.6 ± 12.8

DCDI-G 18.2 ± 10.1 16.4 ± 5.8 20.4 ± 6.8 64.8 ± 10.4 28.0 ± 33.5 39.1 ± 29.5 65.5 ± 11.6 249.8 ± 26.1

DCDI-DSF 10.6 ± 7.0 15.3 ± 10.5 9.1 ± 3.8 42.2 ± 12.4 28.0 ± 29.9 37.8 ± 22.6 42.4 ± 15.6 168.5 ± 37.8

Table 4.29. Results for the additive noise model data set with perfect intervention with unknown
targets
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10 nodes, e = 1 10 nodes, e = 4 20 nodes, e = 1 20 nodes, e = 4
Method SHD SID SHD SID SHD SID SHD SID

UTIGSP*-lin 3.6 ± 2.2 14.5 ± 11.1 23.1 ± 3.4 66.3 ± 6.4 13.7 ± 3.6 67.2 ± 28.8 68.0 ± 11.8 323.6 ± 15.7

UTIGSP* 4.1 ± 2.7 13.9 ± 9.5 24.2 ± 3.8 64.2 ± 11.1 17.8 ± 3.7 87.2 ± 25.8 73.4 ± 7.6 328.7 ± 24.9

UTIGSP(α=2e-1)-lin 11.3 ± 2.8 13.7 ± 6.9 24.7 ± 4.7 67.5 ± 7.4 50.2 ± 5.4 66.2 ± 29.4 104.3 ± 13.6 292.4 ± 18.5

UTIGSP(α=1e-1)-lin 8.5 ± 3.2 13.2 ± 10.3 27.0 ± 4.2 70.5 ± 6.3 36.7 ± 8.5 81.7 ± 38.1 91.7 ± 7.6 288.6 ± 20.4

UTIGSP(α=1e-2)-lin 6.6 ± 2.6 17.0 ± 9.9 27.4 ± 3.4 67.9 ± 8.7 18.3 ± 3.7 71.5 ± 37.0 77.6 ± 12.1 304.2 ± 22.4

UTIGSP(α=1e-3)-lin 4.4 ± 2.5 14.5 ± 10.8 27.8 ± 3.6 72.2 ± 6.0 16.1 ± 5.2 77.2 ± 38.4 72.2 ± 13.4 319.0 ± 16.9

UTIGSP(α=1e-5)-lin 6.3 ± 3.6 20.8 ± 14.8 28.7 ± 3.4 72.6 ± 5.7 15.7 ± 3.7 80.5 ± 19.0 71.5 ± 9.3 323.3 ± 17.0

UTIGSP(α=1e-7)-lin 5.7 ± 2.9 21.6 ± 15.3 29.9 ± 2.8 75.1 ± 5.4 15.7 ± 4.2 77.7 ± 25.7 73.0 ± 12.8 325.7 ± 17.8

UTIGSP(α=1e-9)-lin 5.3 ± 3.3 19.6 ± 15.3 30.2 ± 4.0 74.3 ± 8.6 17.1 ± 4.1 81.3 ± 28.2 76.2 ± 11.3 345.8 ± 17.9

UTIGSP(α=2e-1) 10.4 ± 4.0 12.4 ± 10.0 26.4 ± 4.4 69.3 ± 9.7 48.5 ± 7.8 93.9 ± 37.5 90.3 ± 15.5 306.8 ± 19.9

UTIGSP(α=1e-1) 8.1 ± 3.3 14.0 ± 7.6 26.9 ± 4.1 70.6 ± 6.8 35.6 ± 6.5 103.2 ± 28.8 86.5 ± 13.9 319.6 ± 28.1

UTIGSP(α=1e-2) 6.1 ± 4.1 16.6 ± 12.5 28.1 ± 4.8 68.4 ± 14.3 23.0 ± 5.7 107.1 ± 27.5 84.5 ± 8.9 327.3 ± 20.4

UTIGSP(α=1e-3) 6.4 ± 3.6 19.5 ± 14.5 31.0 ± 3.1 76.8 ± 4.3 20.6 ± 3.5 97.3 ± 20.8 81.1 ± 6.2 338.5 ± 10.8

UTIGSP(α=1e-5) 6.8 ± 3.5 21.1 ± 12.9 35.0 ± 2.2 80.6 ± 4.8 20.5 ± 4.2 95.8 ± 23.2 79.4 ± 8.8 338.1 ± 16.0

UTIGSP(α=1e-7) 6.2 ± 3.5 20.0 ± 11.5 32.5 ± 2.1 75.2 ± 9.9 20.0 ± 4.5 97.4 ± 22.2 78.8 ± 9.3 348.1 ± 12.2

UTIGSP(α=1e-9) 7.6 ± 3.8 22.3 ± 13.4 33.9 ± 2.0 78.6 ± 6.9 19.4 ± 3.9 94.3 ± 27.1 77.9 ± 7.5 342.3 ± 18.7

JCI-PC* 8.1 ± 2.6 26.7 ± 13.4 38.8 ± 1.9 80.8 ± 7.6 16.3 ± 3.5 89.8 ± 34.7 73.7 ± 7.7 335.8 ± 15.1

JCI-PC(α=2e-1) 10.5 ± 2.0 27.3 ± 14.3 39.2 ± 2.2 82.9 ± 6.6 23.4 ± 4.6 99.4 ± 34.8 73.8 ± 7.7 334.4 ± 18.4

JCI-PC(α=1e-1) 9.6 ± 2.0 27.8 ± 14.2 39.2 ± 2.2 82.9 ± 6.6 20.5 ± 3.9 100.0 ± 33.3 73.9 ± 7.7 336.2 ± 15.4

JCI-PC(α=1e-2) 8.2 ± 2.5 26.7 ± 13.4 39.4 ± 2.2 84.8 ± 4.6 16.8 ± 3.5 88.8 ± 36.2 74.0 ± 7.7 340.0 ± 14.3

JCI-PC(α=1e-3) 8.1 ± 2.6 26.7 ± 13.4 39.5 ± 2.1 84.9 ± 4.5 16.4 ± 3.6 90.9 ± 37.0 74.1 ± 7.8 340.1 ± 14.4

DCDI-G 6.6 ± 10.1 9.2 ± 9.4 8.5 ± 4.2 37.1 ± 15.3 16.5 ± 22.8 20.8 ± 10.5 35.4 ± 8.4 177.3 ± 38.8

DCDI-DSF 8.3 ± 11.4 12.1 ± 6.6 4.3 ± 2.6 28.6 ± 14.2 17.0 ± 13.5 52.6 ± 20.2 27.7 ± 10.0 126.9 ± 36.6

Table 4.30. Results for the nonlinear with non-additive noise data set with perfect intervention with
unknown targets
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Prologue to the Third Contribution

Article Details
Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse Actions, Interven-
tions and Sparse Temporal Dependencies
by Sébastien Lachapelle, Pau Rodríguez López, Yash Sharma, Katie Everett, Rémi Le Priol, Alexan-

dre Lacoste and Simon Lacoste-Julien. This work was submitted to the Journal of Machine Learning
Research in 2024.

This work is a significantly extended version of the following articles (excluded from thesis):

Disentanglement via Mechanism Sparsity Regularization: A New Principle for Nonlinear ICA
By Sébastien Lachapelle, Pau Rodríguez López, Yash Sharma, Katie Everett, Rémi Le Priol,

Alexandre Lacoste and Simon Lacoste-Julien. This work was published at the First Conference on
Causal Learning and Reasoning (CLeaR 2022).

Partial Disentanglement via Mechanism Sparsity
By Sébastien Lachapelle and Simon Lacoste-Julien. This work was presented at The First Workshop
on Causal Representation Learning at UAI 2022 with a best paper award and an oral.

Contributions of the Authors (JMLR version)
Sébastien Lachapelle developed the idea, the theory and proofs behind mechanism sparsity

regularization for disentanglement, wrote the crux of the paper, and developed the regularized VAE-
based method and performed most of the experiments. Rémi Le Priol provided valuable feedback
on the clarity of the manuscript. Simon Lacoste-Julien helped with overall paper presentation,
clarified the conceptual framework and the motivation and provided supervision.

Contributions of the Authors (CLeaR version)
Sébastien Lachapelle developed the idea, the theory and proofs behind mechanism sparsity

regularization for disentanglement, wrote the first draft of the paper, and designed and implemented
the regularized VAE-based method. Pau Rodríguez López ran all experiments appearing in the



paper, produced associated figures and ran experiments with image data that are still work in
progress. Yash Sharma contributed to the research process, the experimental design in particular,
implemented and ran experiments on image data that did not make it in the final version, and
contributed to the writing and the literature review. Katie Everett implemented and ran experiments
on image data that did not make it in the final version and contributed to the writing and figures.
Rémi Le Priol reviewed the proofs of main theorems, simplified some arguments and the overall
proof presentation and contributed to the writing and figures. Alexandre Lacoste produced image
datasets that did not make it into the final version and provided supervision. Simon Lacoste-Julien
helped with overall paper presentation, clarified the conceptual framework and the motivation and
provided supervision.

Context and Limitations
The following contribution (of which a first version was presented at the Workshop on the

Neglected Assumptions in Causal Inference at ICML 2021) was inspired by numerous talks given
by Yoshua Bengio at Mila where he described the idea of learning a “causal graph in latent space”
and how it could alleviate some of the limitations of current deep learning approaches [Bengio, 2019,
Schölkopf et al., 2021]. However, there were no theoretical guarantees showing this vision was
actually achievable despite the apparent lack of identifiability. This state of affairs did not prevent
empirical investigations in this space including Goyal et al. [2021b], which proposed an architecture
in which a sparsely connected latent dynamical system is learned and shown empirically to improve
out-of-distribution generalization, Volodin [2021], which proposed a very similar sparsity principle
to ours without identifiability guarantees, and Träuble et al. [2021], which highlighted the failure
of disentanglement methods to recover correlated latent variables. On the theoretical side, the
difficulty of identifiability in the nonlinear mixing case were already well understood [Hyvärinen
and Pajunen, 1999, Locatello et al., 2020a] and seminal works in nonlinear ICA were proving the
first identifiability results for nonlinear mixing [Hyvarinen and Morioka, 2016, 2017, Hyvärinen
et al., 2019, Khemakhem et al., 2020a], which were crucial for the following contribution. The
key novelty in our work is to leverage sparsity of the latent causal graphical model to disentangle
with theoretical guarantees. More precisely the framework can leverage auxiliary variables with
sparse effects (like actions), sparse interventions (also see [Lippe et al., 2022, 2023b]) and/or sparse
temporal dependencies. The latter principle was exploited before in an extreme form where each
latent zt

i can only be influenced by itself, zt−1
i [Tong et al., 1993, Hyvarinen and Morioka, 2017,

Klindt et al., 2021]. To the best of our knowledge, our framework is the first to show theoretically that
more permissive dependency structures between latent factors can be also leveraged to disentangle,
even without an observed auxiliary variable (e.g. no actions nor interventions). Our work was also
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the first to prove that interventions on latent variables can be used to disentangled, concurrently
with Lippe et al. [2022].

We provide a more thorough review of the literature both predating and postdating the CLeaR
2022 version in Section 5.7, where we discuss many recent works in causal representation learning
and disentanglement showing identifiability in various settings. We highlight the fact that Zheng
et al. [2022] largely based their proof strategies and assumptions on the CLeaR 2022 version of our
work, to show that sparsity in the mixing function f(z) can also be leveraged for disentanglement.

In the last few years, the community went from having no theoretical basis for causal represen-
tation learning to a plethora of new identifiability results showing causal representation learning
is actually possible, at least in the infinite data regime. The next frontier for causal representation
learning, and disentanglement more generally, is to go from success in theory to success in practical
applications. Lopez et al. [2023] adapted our approach in order to apply it to gene expression data
with perturbations and showed that (i) many different perturbations have the same effect on a given
latent factors, suggesting these act on the same pathway, which is corroborated by previous studies,
and (ii) sparse models with a disentangled representation can transfer more easily to held-out
perturbations. Lei et al. [2023] similarly showed that the model we propose (with a sparse latent
graph) can also adapt faster to sparse shift in the latent distribution of simple video data. These
observations might be instantiations of the phenomenon identified by Bengio et al. [2020] and
theoretically analyzed by Le Priol et al. [2021] which showed that causal models can sometimes
adapt faster to sparse changes, i.e. with fewer samples. Further investigations are needed to explain
this phenomenon in the causal representation learning setting.

At the moment, training models for causal representation learning is challenging since it inherits
both difficulties of learning a causal graph (which is discrete) and training deep neural networks.
There might also be an inherent trade-off between identifiability and ease of optimization: Overpa-
rameterization is known to make optimization easier but also making the model less identifiable.
Nevertheless, Lippe et al. [2023a] have shown important progress when it comes to training these
models, and showed convincing results on image data simulating robot control. More efforts
are needed to demonstrate the applicability of causal representation learning methods to realistic
settings.
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Chapter 5

Nonparametric Partial Disentanglement via
Mechanism Sparsity: Sparse Actions, Interventions

and Sparse Temporal Dependencies

Abstract
This work introduces a novel principle for disentanglement we call mechanism sparsity regu-

larization, which applies when the latent factors of interest depend sparsely on observed auxiliary
variables and/or past latent factors. We propose a representation learning method that induces
disentanglement by simultaneously learning the latent factors and the sparse causal graphical model
that explains them. We develop a nonparametric identifiability theory that formalizes this principle
and shows that the latent factors can be recovered by regularizing the learned causal graph to be
sparse. More precisely, we show identifiablity up to a novel equivalence relation we call consistency,
which allows some latent factors to remain entangled (hence the term partial disentanglement). To
describe the structure of this entanglement, we introduce the notions of entanglement graphs and
graph preserving functions. We further provide a graphical criterion which guarantees complete

disentanglement, that is identifiability up to permutations and element-wise transformations. We
demonstrate the scope of the mechanism sparsity principle as well as the assumptions it relies
on with several worked out examples. For instance, the framework shows how one can leverage
multi-node interventions with unknown targets on the latent factors to disentangle them. We fur-
ther draw connections between our nonparametric results and the now popular exponential family
assumption. Lastly, we propose an estimation procedure based on variational autoencoders and
a sparsity constraint and demonstrate it on various synthetic datasets. This work is meant to be a
significantly extended version of Lachapelle et al. [2022].



5.1. Introduction
It has been proposed that causal reasoning will be central to move modern machine learning

algorithms beyond their current shortcomings, such as their lack of robustness, transferability and
interpretability [Pearl, 2019, Schölkopf, 2019, Goyal and Bengio, 2021]. To achieve this, the field
of causal representation learning (CRL) [Schölkopf et al., 2021] aims to learn representations
of high-dimensional observations, such as images, that are suitable to perform causal reasoning
such as predicting the effect of unseen interventions and answering counterfactual queries. A
now popular formalism to do so is to assume that the observations x ∈ Rdz are sampled from a
generative model of the form x = f(z) where z ∈ Rdz is a random vector of unobserved and
semantically meaningful variables, also called latent factors, distributed according to an unknown
causal graphical model (CGM) [Pearl, 2009b, Peters et al., 2017] and transformed by a potentially
highly nonlinear decoder, or mixing function, f [Kocaoglu et al., 2018, Volodin, 2021, Lachapelle
et al., 2022, Lippe et al., 2023b, Brehmer et al., 2022, Ahuja et al., 2023, Buchholz et al., 2023, von
Kügelgen et al., 2023, Zhang et al., 2023, Jiang and Aragam, 2023]. The goal is then to recover the
latent factors zi up to permutation and rescaling as well as the causal relationships explaining them.
This is closely related to the problem of disentanglement [Bengio et al., 2013, Higgins et al., 2017,
Locatello et al., 2020a] which also aims at extracting interpretable variables from high-dimensional
observations, but without the emphasis on modelling their causal relations. Such problems are
plagued by the difficult question of identifiability, which is of crucial importance to the classical
settings of causal discovery [Pearl, 2009b, Peters et al., 2017], where f is assumed to be the identity,
and independent component analysis (ICA) [Hyvärinen et al., 2001, 2023], where the causal graph
over latents is assumed empty. In the former, one can only identify the Markov equivalence class
of the causal graph (assuming faithfulness) thus leaving some edge orientations ambiguous [Pearl,
2009b], while in the latter, identifiability of the ground-truth latent factors is impossible when
assuming a general nonlinear f , [Hyvärinen and Pajunen, 1999]. The general CRL problem inherits
the difficulties from both of these settings, which makes identifiability especially challenging.
Various strategies to improve identifiability have been contributed to the literature such as assuming
access to interventional data in which latent factors are targeted by interventions [Lachapelle et al.,
2022, Lippe et al., 2022, 2023b, Ahuja et al., 2023], or access to an auxiliary variable a that renders
the factors zi mutually independent when conditioned on [Hyvärinen et al., 2019, Khemakhem
et al., 2020a,b]. A valid auxiliary variable a must be observed and could correspond, for instance,
to a time or an environment index, an action in an interactive environment, or even a previous
observation if the data has temporal structure. See Section 5.7 for a more extensive review of
existing approaches for latent variable identification.
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The present paper introduces1 mechanism sparsity regularization as a new principle for la-
tent variable identification. We show that if (i) an auxiliary variable a is observed and affects
the latent variables sparsely and/or (ii) the latent variables present sparse temporal dependen-
cies, then the latent variables can be recovered by learning a graphical model for z and a and
regularizing it to be sparse (Theorems 5.1, 5.2, 5.3 & 5.5). More specifically, we consider
models of the form xt = f(zt) + nt, where nt is independent noise (Assumption 5.1) and
the latent factors zt

i are mutually independent given the past factors and auxiliary variables, i.e.
p(zt | z<t,a<t) =

∏dz

i=1 p(zt
i | z<t,a<t) (Assumption 5.2). Crucially, we leverage the assumption

that these mechanisms are sparse in the sense that p(zt | z<t,a<t) factorizes according to a sparse
causal graph G (Assumption 5.3). Interestingly, if a corresponds to an intervention index, our
framework explains how interventions targeting unknown subsets of latent factors can identify them
(Section 5.3.3.1). We emphasize that the settings where the data has no temporal dependencies or no
auxiliary variable a are special cases of our framework. Our identifiability results are summarized
in Table 5.1.

This work is meant to be an extended version of Lachapelle et al. [2022] in which we generalize
along two main axes: First, we relax the exponential family assumption by providing a fully
nonparameteric treatment. Secondly, our results drop the graphical criterion of Lachapelle et al.
[2022] and, thus, allow for arbitrary latent causal graphs. As a consequence of this relaxation,
instead of guaranteeing identifiability up to permutation and element-wise transformation, we
guarantee identifiability up to what we call a-consistency or z-consistency (Definitions 5.13 & 5.14),
which might allow certain latent variables to remain entangled. Our results thus have the following
flavor: Given a specific ground-truth causal graph G over z and a, we describe precisely the
structure of the entanglement between latent factors via what we call an entanglement graph

(Definition 5.3) and graph preserving functions (Definition 5.12). See Figure 5.3 for examples.
Interestingly, the stronger identifiability up to permutation and element-wise transformation arises
as a simple consequence of our theory when the graphical criterion of Lachapelle et al. [2022]
is assumed to hold. In addition to these two main axes of generalization, we provide extensive
examples illustrating the scope of our framework, our assumptions and the consequences of our
results (See Table 5.2 for a list). When it comes to the learning algorithm, we replaced the sparsity
penalty by a sparsity constraint, which improves the learning dynamics and is more interpretable,
which results in easier hyperparameter tuning.

The hypothesis that high-level concepts can be described by a sparse dependency graph has
been described and leveraged for out-of-distribution generalization by Bengio [2019] and Goyal
et al. [2021b], which were early sources of inspiration for this work. To the best of our knowledge,

1A shorter version of this work originally appeared in Lachapelle et al. [2022].
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Figure 5.1. A minimal motivating example. The latent factors zt
T , zt

R and zt
B represent the x-

positions of the tree, the robot and the ball at time t, respectively. Only the image of the scene xt

and the action at−1 are observed. See end of Section 5.2.1 for details.

Sparse Ĝa Sparse Ĝz

Parametric
assumption Continuous a Discrete a

(interventions)
Temporal

dependencies
Sufficient
influence

Identifiable
up to Examples

Thm. 5.1 None Required – Optional Ass. 5.6 Def. 5.13 5.2, 5.3, 5.4, 5.8, 5.9
Thm. 5.2 None – Required Optional Ass. 5.7 Def. 5.13 5.2, 5.3, 5.4, 5.10, 5.11, 5.12
Thm. 5.3 None Optional Optional Required Ass. 5.8 Def. 5.14 5.5, 5.6, 5.7, 5.13
Thm. 5.4 Exp. fam. Optional Optional Optional – Def. 5.17 5.14
Thm. 5.5 Exp. fam. Optional Optional Required Ass. 5.11 Def. 5.14, 5.17 5.15

Table 5.1. Summary of our identifiability results.

our theory is the first to show formally that this inductive bias can sometimes be enough to recover
the latent factors.

Figure 5.1 shows a minimal motivating example in which our approach could be used to extract
the high-level variables (such as the x-position of the three objects) and learn their dynamics
(how the objects move and affect one another) from a time series of images and agent actions,
(xt,at). Theorems 5.1, 5.2, 5.3 & 5.5 show how the sparse dependencies between the objects and
the action can be leveraged to estimate the latent variables as well as the graph describing their
dynamics. The learned CGM could be used subsequently to simulate interventions on semantic
variables [Pearl, 2009b, Peters et al., 2017], such as changing the torque of the robot or the weight
of the ball. Moreover, disentanglement could be useful to interpret what caused the actions of
an agent [Pearl, 2019]. Following Lachapelle et al. [2022], empirical works demonstrated that
disentangled representations with sparse mechanisms can adapt to unseen interventions faster in the
context of single-cell biology [Lopez et al., 2023] and synthetic video data [Lei et al., 2023].
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Summary of our contributions:
(1) We introduce1 a new principle for disentanglement based on mechanism sparsity regulariza-

tion motivated by rigorous and novel identifiability guarantees (Theorems 5.1, 5.2, 5.3 &
5.5).

(2) We extend Lachapelle et al. [2022] by providing a fully nonparameteric treatment and
allowing for arbitrary latent graphs. Given a latent ground-truth graph, our theory predicts
the structure of the entanglement between variables, which we formalize with entanglement

graphs (Definition 5.3), graph preserving maps (Definition 5.12) and novel equivalence

relations (Definitions 5.13 & 5.14).
(3) We provide several examples to illustrate the generality of our results and get a better

understanding of their various assumptions and consequences (summarized in Table 5.2).
For instance, we show how multi-node interventions with unknown-targets can yield disen-
tanglement, both with and without temporal dependencies (Examples 5.11 & 5.12).

(4) We introduce an evaluation metric denoted by Rcon which quantifies how close two repre-
sentations are to being a-consistent or z-consistent (Section 5.6).

(5) We implement a learning approach based on variational autoencoders (VAEs) [Kingma
and Welling, 2014] which learns the mixing function f , the transition distribution p(zt |
z<t,a<t) and the causal graphG. The latter is learned using binary masks and regularized
for sparsity via a constraint as opposed to a penalty as in Lachapelle et al. [2022].

(6) We perform experiments on synthetic datasets in order to validate the prediction of our
theory.

Overview. Section 5.2 introduces the model (Section 5.2.1), entanglement maps and graphs (Sec-
tion 5.2.2), the notion identifiability (Section 5.2.3), equivalence up to diffeomorphism (Sec-
tion 5.2.4) and disentanglement formally (Section 5.2.5). Section 5.3 provides mathematical
intuition for why mechanism sparsity yields disentanglement (Section 5.3.1); introduces the ma-
chinery of graph preserving maps (Section 5.3.2) which are key to establish identifiability up
to a-consistency (Section 5.3.3) and z-consistency (Section 5.3.4), i.e. partial disentanglement.
Section 5.3 also discusses the relationship to interventions (Section 5.3.3.1), provides a graphical
criterion guaranteeing complete disentanglement (Section 5.3.6), and introduces and discusses
extensively the sufficient influence assumptions on which these results critically rely (Sections 5.3.7
& 5.3.8). Section 5.4 draws connections between our nonparameteric theory and the exponential

family assumption sometimes used in the literature. Section 5.5 presents the VAE-based learning
algorithm with sparsity constraint. Section 5.6 introduces our novel Rcon metric. Section 5.7 reviews
the literature on identifiability in representation learning. Section 5.8 presents the empirical results.
Notation. Scalars are denoted in lower-case and vectors in lower-case bold, e.g. x ∈ R and x ∈ Rn.
Note that these will sometimes denote a random variables, depending on context. We maintain an
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Examples Type of disentanglement Auxiliary variable Time dependencies

5.2 Complete Yes (single target) Optional
5.3 Partial Yes (single target) Optional
5.4 Complete Yes (multi-target) Optional
5.5 Complete Optional Yes (independent factors)
5.6 Complete Optional Yes (dependent factors)
5.7 Partial Optional Yes (dependent factors)
5.8 Partial Yes (single-target continuous ) Yes
5.9 Complete Yes (multi-target continuous) No

5.10 Complete Yes (single-target interventions) No
5.11 Complete Yes (multi-target interventions) Yes
5.12 Complete Yes (grouped multi-target interventions) No
5.13 Complete No Yes (non-Markovian)
5.15 Complete No Yes (Markovian)

Table 5.2. List of examples illustrating the scope of our theory, its assumptions and its conse-
quences.

analogous notation for scalar-valued and vector-valued functions, e.g. f and f . The ith coordinate
of the vector x is denoted by xi. The set containing the first n integers excluding 0 is denoted
by [n]. Given a subset of indices S ⊆ [n], xS denotes the subvector consisting of entries xi for
i ∈ S. Given a sequence of T random vectors (x1, . . . ,xT ), the subsequence consisting of the first
t elements is denoted by x≤t := (x1, ...,xt), and analogously for x<t. We will sometimes combine
these notations to get x≤t

S := (x1
S, . . . ,x

t
S). Given a function f : Rn → Rm, its Jacobian matrix

evaluated at x ∈ Rn is denoted by Df(x) ∈ Rm×n. See Table 5.5 in appendix for more.

5.2. Problem setting, entanglement graphs & disentanglement
In this section, we introduce the latent variable model under consideration (Section 5.2.1),

entanglement graphs (Section 5.2.2), identifiability and observational equivalence (Section 5.2.3),
equivalence up to diffeomorphism (Section 5.2.4) as well as permutation equivalence (Section 5.2.5).

5.2.1. An identifiable latent causal model

We now specify the setting under consideration. Assume we observe the realization of a
sequence of dx-dimensional random vectors {xt}T

t=1 and a sequence of da-dimensional auxiliary
vectors {at}T −1

t=0 . The coordinates of at are either discrete or continuous and can potentially
represent, for example, an action taken by an agent or the index of an intervention or environment
(see Section 5.3.3.1). The observations {xt} are assumed to be explained by a sequence of hidden
dz-dimensional continuous random vectors {zt}T

t=1 via a ground-truth decoder function f .

Assumption 5.1 (Observation model). For all t ∈ [T ], the observations xt are given by

xt = f(zt) + nt , (5.1)
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where nt ∼ N (0, σ2I) are mutually independent across time and independent of all zt and at with

σ2 ≥ 0. Moreover, dz ≤ dx and f : Rdz → Rdx is a diffeomorphism onto its image2. Lastly, assume

that f(Rdz) is closed in Rdx .

Importantly, we suppose that each factor zt
i contains interpretable information about the obser-

vation, e.g. for high-dimensional images, the coordinates zt
i might be the position of an object, its

color, or its orientation in space. This idea that there exists a ground-truth decoder f that captures
the relationship between the so-called “natural factors of variations” and the observations x is
of capital importance, since it is the very basis for a mathematical definition of disentanglement
(Definition 5.7). Appendix D.1 discusses the implications of the diffeomorphism assumption (see
also Mansouri et al. [2022]). We denote z≤t := [z1 · · · zt] ∈ Rdz×t and analogously for z<t and
other random vectors.

In a similar spirit to previous works on nonlinear ICA [Hyvärinen et al., 2019, Khemakhem
et al., 2020a], we assume the latent factors zt

i are conditionally independent given the past.

Assumption 5.2 (Conditionally independent latent factors). The latent factors zt
i are conditionally

mutually independent given z<t and a<t:

p(zt | z<t,a<t) =
dz∏

i=1

p(zt
i | z<t,a<t) , (5.2)

where p(zt | z<t,a<t) is a density function w.r.t. the Lebesgue measure on Rdz . We assume that the

support of p(zt
i | z<t,a<t) is R for all z<t and a<t. The support of p(zt | z<t,a<t) is thus given

by Rdz .

We will refer to the l.h.s. of (5.2) as the transition model and to each factor p(zt
i | z<t,a<t) as

mechanisms. Notice that we do not assume the system is Markovian, i.e. the distribution over future
states can depend on the whole history of latents and auxiliary variables (z<t,a<t). In addition, this
model can represent non-homogeneous processes by taking the auxiliary variable a to be a time
index [Hyvärinen et al., 2019].

We are going to describe the dependency structure of the latent and auxiliary variables
through time via a probabilistic directed graphical model composed of two bipartite graphs,
Gz ∈ {0, 1}dz×dz , which relates z<t to zt, and Ga ∈ {0, 1}dz×da , which relates a<t to zt. A
directed edge points from z<t

j to zt
i if and only if Gz

i,j = 1. Analogously, a directed edge points
from a<t

ℓ to zt
i , if and only ifGa

i,ℓ = 1. Figure 5.1 shows an example of such graphs together with

2A diffeomorphism is a C1 bijection with a C1 inverse. Generally, given a map h : A→ Rm where A ⊆ Rn, saying
h is Ck is typically only well defined if A is an open set of Rn. Throughout, if A ⊆ Rn is arbitrary (not necessarily
open), we say h is Ck if there exists a Ck map h̃ : U → Rm defined on an open set U of Rn containing A such that
h = h̃ on A. Note that it is then meaningful for f−1 : f(Rdz )→ Rdz to be C1 even when f(Rdz ) is not open in Rdx .
Moreover, it can be shown that f : Rdz → Rdx is a diffeomorphism onto its image if f is an homeomorphism onto its
image, i.e. continuous in both directions, and has a full rank Jacobian everywhere on its domain [Munkres, 1991, Sec.
23 & Thm. 24.1].
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its adjacency matrixG := [Gz,Ga]. The following assumption specifies the relationship between
these graphs and the transition model.

Assumption 5.3 (Transition model p is Markov w.r.t. G). For all mechanism i ∈ [dz],

p(zt
i | z<t,a<t) = p(zt

i | z<t
Paz

i
,a<t

Paa
i
) , (5.3)

where Paz
i ⊆ [dz] and Paa

i ⊆ [da] are the sets of parents of zt
i inGz andGa, respectively.

The graph G thus encodes a set of conditional independence statements about the latent and
auxiliary variables. We will say that mechanisms are sparse when the graphsGa andGz are sparse.

This model has three components that need to be learned: (i) the decoder function f , (ii) the
transition model over latent variables p, and (iii) the dependency graph G. We collect all these
components into θ := (f , p,G). Everything else in the model, i.e. dz and σ2, is assumed to be
known. We assume that σ2 is known here mainly for simplicity, since, when it is not, it can be
identified as shown by Lachapelle et al. [2022, Appendix A.4.1], as long as dx > dz.

Notice how we have not specified any model for the auxiliary variable at. We do not intend to
do so in this work, as we are solely interested in modelling the conditional distribution of x≤T and
z≤T given a<T . We denote by A ⊆ Rda the set of possible values for the auxiliary variable at. We
thus have that, for all values of a<T ∈ AT , our model induces a conditional distribution

p(x≤T | a<T ) =
∫ T∏

t=1

p(xt | zt)p(zt | z<t,a<t)dz≤T , (5.4)

where p(xt | zt) = N (xt;f(zt), σ2I). We note that if σ2 = 0, the conditional distribution of xt

given zt is a Dirac centered at f(zt) and thus has no density w.r.t. to the Lebesgue measure. Even
if, in that case, the above integral makes no sense, the conditional distribution of x≤T given a<T is
still well-defined and all the results of this work still hold since none of the proofs requires σ2 > 0.
A motivating example. Figure 5.1 represents a minimal example where our theory applies. The
environment consists of three objects: a tree, a robot and a ball with x-positions zt

T , zt
R and zt

B,
respectively. Together, they form the vector zt of high-level latent variables, i.e. zt = (zt

T , z
t
R, z

t
B).

A remote controls the direction in which the wheels of the robot turn. The vector at records these
actions, which might be taken by a human or an artificial agent trained to accomplish some goal.
The only observations are the actions at and the images xt representing the scene which is given by
xt = f(zt) + nt. The dynamics of the environment is governed by the transition model p, which,
e.g., could be given by a Gaussian model of the form p(zt

i | z<t,a<t) = N (zt
i ;µi(zt−1,at−1), σ2

z).
Plausible connectivity graphsGz andGa are given in Figure 5.1 showing how the latent factors are
related, and how the controller affects them. For every object, its position at time step t depends on
its position at t− 1. The position of the tree, zt

T , is not affected by anything, since neither the robot
nor the ball can change its position. The robot, zt

R, changes its position based on both the action,
at−1 and the position of the tree, zt−1

T (in case of collision). The ball position, zt
B, is affected by
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both the robot, which can kick it around by running into it, and the tree, on which it can bounce.
The key observations here are that (i) the different objects interact sparsely with one another and (ii)
the action at affects very few objects (in this case, only one). The theorems of Section 5.3 show
how one can leverage this sparsity for disentanglement.

5.2.2. Entanglement maps & entanglement graphs

In this section, we define entanglement maps, which describes the functional relationship
between the learned and ground-truth representations, and entanglement graphs, which describes
their entanglement structure.

Definition 5.1 (Entanglement maps). Let f and f̃ be two diffeomorphisms from Rdz to their images

such that f(Rdz) = f̃(Rdz). The entanglement map of the pair (f , f̃) is given by

v := f−1 ◦ f̃ . (5.5)

This map will be crucial throughout this work, especially to define disentanglement. Intuitively,
the entanglement map for a pair of decoders (f , f̃) translates the representation of one model to
that of the other. In general, the entanglement maps of (f , f̃) and (f̃ ,f) are different.

We now define the dependency graph of some function h to be such that each edge indicates
that some input i influences some output j:

Definition 5.2 (Functional dependency graph). Let h be a function from Rn to Rm. The dependency
graph of h is a bipartite directed graph from [n] to [m] with adjacency matrixH ∈ {0, 1}m×n such

that

Hi,j = 0 ⇐⇒ There is a function h̄ such that, for all a ∈ Rn, hi(a) = h̄i(a−j) , (5.6)

where a−j is a with its jth coordinate removed.

Example 5.1 (Dependency graph of a linear map). Let h(z) := Wz whereW ∈ Rm×n and letH

be the dependency graph of h. Then,Hi,j = 0 ⇐⇒ Wi,j = 0.

We will be particularly interested in the dependency graph of the entanglement map v := f−1◦f̂ ,
denoted by V .

Definition 5.3 (Entanglement graphs). Let f and f̃ be two diffeomorphisms from Rdz to their

images such that f(Rdz) = f̃(Rdz). The entanglement graph of the pair (f , f̃) is the dependency

graph (Definition 5.2) of their entanglement map v := f−1 ◦ f̃ , which we denote V ∈ {0, 1}dz×dz .

We now relate the dependency graph of a function to the zeros of its Jacobian matrix. A proof
can be found in Appendix A.2.
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Proposition 5.1 (Linking dependency graph and Jacobian). Let h be a C1 function, i.e. continuously

differentiable, from Rn to Rm and letH be its dependency graph (Definition 5.2). Then,

Hi,j = 0 ⇐⇒ For all a ∈ Rn , Dh(a)i,j = 0 . (5.7)

The equivalence (5.7) can be seen as an equivalent definition of dependency graph for differen-
tiable functions.

5.2.3. Identifiability and observational equivalence

To analyse formally whether a specific algorithm is expected to yield a disentangled representa-
tion, we will rely on the notion of identifiability. Before defining what we mean by identifiability, we
will need the notion of observationally equivalent models. Two models are observationally equiva-
lent, if both models represent the same distribution over observations. The following formalizes this
definition.

Definition 5.4 (Observational equivalence). We say two models θ := (f , p,G) and θ̃ := (f̃ , p̃, G̃)
satisfying Assumption 5.1 are observationally equivalent, denoted θ ∼obs θ̃, if and only if, for all

a<T ∈ AT and all x≤T ∈ Rdx×T ,

p(x≤T | a<T ) = p̃(x≤T | a<T ) . (5.8)

Formally, we say a parameter θ is identifiable up to some equivalence relation ∼, when

θ ∼obs θ̃ =⇒ θ ∼ θ̃ . (5.9)

This work is mainly concerned with proving statements of the above form by making assumptions
both on θ and θ̂. The stronger the assumptions on θ and θ̂ are, the stronger the equivalence relation
∼ will be. The following sections present two equivalence relations over models, namely, ∼diff and
∼perm. We note that the equivalence relation ∼perm will help us formalize disentanglement.

Practically speaking, observational equivalence between the learned model θ̂ and the ground-
truth model θ can be achieved via maximum likelihood estimation in the infinite data regime. Thus,
identifiability results of the form of (5.9) guarantee that if the learned model is perfectly fitted on
the data (assumed infinite), its parameter θ̂ is ∼-equivalent to the that of the ground-truth model, θ.

5.2.4. Equivalence up to diffeomorphism

We start by defining equivalence up to diffeomorphism. This equivalence relation is important
since we will show later on that it is actually the same as observational equivalence and will thus be
our first step in all our identifiability results. In what follows, we overload the notation and write
v(z<t) := [v(z1), . . . ,v(zt−1)], and similarly for other functions.
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Definition 5.5 (Equivalence up to diffeomorphism). We say two models θ := (f , p,G) and

θ̃ := (f̃ , p̃, G̃) satisfying Assumption 5.1 are equivalent up to diffeomorphism, denoted θ ∼diff θ̃,

if and only if f(Rdz) = f̃(Rdz) and, for all t ∈ [T ], all a<t ∈ At and all z≤t ∈ Rdz×t,

p̃(zt | z<t,a<t) = p(v(zt) | v(z<t),a<t)| detDv(zt)| , (5.10)

where v := f−1 ◦ f̃ (entanglement map) is a diffeomorphism and Dv denotes its Jacobian matrix.

The fact that the relation ∼diff is indeed an equivalence comes from the fact that the set of
diffeomorphisms from a set to itself forms a group under composition.

To better understand the above definition, let zt := g(z<t,a<t; ϵt) and z̃t := g̃(z̃<t,a<t; ϵ̃t)
where ϵt and ϵ̃t are noise variables and g and g̃ are functions such that the random variables zt and
z̃t have conditional densities given by p(zt | z<t,a<t) and p̃(z̃t | z̃<t,a<t), respectively. Using the
change-of-variable formula for densities, one can rewrite (5.10) as

g̃(z̃<t,a<t; ϵ̃t) d= v−1 ◦ g(v(z̃<t),a<t; ϵt) , (5.11)

where “ d=” denotes equality in distribution. This equation has a nice interpretation: applying the
latent transition model θ̃ to go from (z̃<t,a<t) to z̃t is the same as first applying v, then applying
the latent transition model θ and finally applying v−1. Equation (5.11) is reminiscent of Ahuja et al.
[2022a], in which the mechanism g̃ would be called an imitator of g. Ahuja et al. [2022a] showed
that ∼obs and ∼diff are actually one and the same. For completeness, we present an analogous
argument here. We start by showing that θ ∼diff θ̃ implies θ ∼obs θ̃.

p(x≤T | a<T ) =
∫ T∏

t=1

[
p(xt | zt)p(zt | z<t,a<t)

]
dz≤T

=
∫ T∏

t=1

[
p(xt | v(zt))p(v(zt) | v(z<t),a<t)

]
| detDv(z≤T )|dz≤T

=
∫ T∏

t=1

[
p(xt | v(zt))p(v(zt) | v(z<t),a<t)| detDv(zt)|

]
dz≤T

=
∫ T∏

t=1

[
p̃(xt | zt)p̃(zt | z<t,a<t)

]
dz≤T = p̃(x≤T | a<T ) ,

where the second equality used the change-of-variable formula, the third equality used the fact that
the Jacobian of v(z≤T ) is block-diagonal (each block corresponds to a time step t) and the next to
last equality used the definition of ∼diff and the fact that

p(xt | v(zt)) = N (xt;f(f−1 ◦ f̃(zt)), σ2I) = N (xt; f̃(zt), σ2I) = p̃(xt | zt) .

The following proposition establishes the converse, i.e. that θ ∼obs θ̃ implies θ ∼diff θ̃. Since
its proof is more involved, we present it in the Appendix A.3. Note that this first identifiability result
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is relatively weak and should be seen as a first step towards stronger guarantees. A very similar
result was shown by Ahuja et al. [2022a, Theorem 3.1] to highlight the fact that the representation
f is identifiable up to the equivariances v of the transition model p.

Proposition 5.2 (Identifiability up to diffeomorphism). Let θ := (f , p,G) and θ̂ := (f̂ , p̂, Ĝ) be

two models satisfying Assumption 5.1. If θ ∼obs θ̂ (Def. 5.4), then θ ∼diff θ̂ (Def. 5.5).

Intuitively, Proposition 5.2 shows that if two models agree on the distribution of the observations,
then their “data manifold” f(Rdz) and f̂(Rdz) are equal and their respective transition models are
related via v := f−1 ◦ f̂ .

5.2.5. Disentanglement and equivalence up to permutation

A disentangled representation is often defined intuitively as a representation in which the
coordinates are in one-to-one correspondence with natural factors of variation in the data. We are
going to assume that these natural factors are captured by an unknown ground-truth decoder f .
Given a learned decoder f̂ such that f(Rdz) = f̂(Rdz), the entanglement map v := f−1 ◦ f̂ gives
a correspondence between the learned representation f̂ and the natural factors of variations of f .
The following equivalence relation will help us define disentanglement.

Definition 5.6 (Equivalence up to permutation). We say two models θ := (f , p,G) and θ̃ :=
(f̃ , p̃, G̃) satisfying Assumptions 5.1, 5.2 & 5.3 are equivalent up to permutation, denoted θ ∼perm θ̃,

if and only if there exists a permutation matrix P such that

(1) θ ∼diff θ̃ (Def. 5.5) and G̃a = PGa and G̃z = PGzP⊤ ; and

(2) The entanglement map v := f−1 ◦ f̃ can be written as v = d◦P⊤, where d is element-wise,

i.e. di(z) depends only on zi, for all i. In other words, the entanglement graph is V = P⊤.

The fact that the relation ∼perm is an equivalence relation is actually a special case of a more
general result that we present later on in Section 5.3.3.

This allows us to give a formal definition of (complete) disentanglement. Note the we use the
term complete to contrast with partial disentanglement.

Definition 5.7 (Complete disentanglement). Given a ground-truth model θ, we say a learned model

θ̂ is completely disentangled when θ ∼perm θ̂.

Intuitively, a learned representation is completely disentangled when there is a one-to-one
correspondence between its coordinates and those of the ground-truth representation (see Figure 5.2).

We define partial disentanglement, as something which lives strictly between equivalence up to
diffeomorphism and equivalence up to permutation:

Definition 5.8 (Partial disentanglement). Given a ground-truth model θ, we say a learned model θ̂

is partially disentangled when θ ∼diff θ̂ with an entanglement graph V (Definition 5.3) that is not

a permutation nor the complete graph.
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Figure 5.2. An illustration of disentanglement (Definition 5.7). The ground-truth decoder f
captures the “natural factors of variations”, which here are the x-positions of the robot and ball.
The learned decoder f̂ is disentangled here because each of its latent coordinates corresponds
exactly one objects in the scene. Mathematically, this is captured by the special structure of the
entanglement map v := f−1 ◦ f̂ , which is a permutation composed with an element-wise invertible
transformation.

This definition of partial disentanglement ranges from models that are almost completely
entangled, i.e. those with a very dense entanglement graphs V , to ones that are very close to being
completely disentangled, i.e. those with a very sparse V . The following section will make more
precise how one can learn a completely or partially disentangled representation from data and
exactly what form the entanglement graph is going to take.

5.3. Nonparametric partial disentanglement via mechanism spar-
sity

In this section, we provide a first theoretical insight as to why mechanism sparsity can lead to
disentanglement (Section 5.3.1), introduce the machinery of G-preserving maps (Section 5.3.2)
which leads up to theorems showing identifiability up to a-consistency (Section 5.3.3) and z-
consistency (Section 5.3.4), which corresponds to partial disentanglement. We also relate these
results to interventions (Section 5.3.3.1), show how to combine both regularization on Ĝa and
Ĝz to obtain stronger guarantees (Section 5.3.5) and introduce a graphical criterion guaranteeing
complete disentanglement (Section 5.3.6). Finally, we introduce the sufficient influence assump-

tions and prove the identifiability results (Section 5.3.7), and provide multiple examples to build
intuition (Section 5.3.8).

Before going further, we briefly introduce an abuse of notation that will be handy throughout:
we will sometimes use vectors and matrices as sets of indices corresponding to their supports.

Definition 5.9 (Vectors & matrices as index sets). Let a ∈ Rn andA ∈ Rm×n. We will sometimes

use a to denote the set of indices corresponding to the support of the vector a, i.e.

a ∼ {i ∈ [n] | ai ̸= 0} . (5.12)
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This will allow us to write things like i ∈ a or a ⊆ b, where b ∈ Rn. We will use an analogous

convention for matrices, i.e.,

A ∼ {(i, j) ∈ [m]× [n] | Ai,j ̸= 0} , (5.13)

This will allow us to write things like (i, j) ∈ A andA ⊆ B, whereB ∈ Rm×n.

5.3.1. A first mathematical insight for disentanglement via mechanism sparsity

In this section, we derive a first insight pointing towards how mechanism sparsity regularization,
i.e. regularizing Ĝ to be sparse, can promote disentanglement.

Recall that we would like to show that θ ∼obs θ̂ implies θ ∼perm θ̂, i.e. disentanglement
(or partial disentanglement). Our approach will be to start from (5.10), which is guaranteed by
Proposition 5.2, and perform a series of algebraic manipulations to gain mathematical insight
into how regularizing Ĝ to be sparse (mechanism sparsity) can induce disentanglement. A key
manipulation will be taking first and second order derivatives. For this to be possible, we require a
certain level of smoothness for the transition models:

Assumption 5.4 (Smoothness of transition model). When a is continuous, the transition densities

p(zt
i | z<t,a<t) are C2 functions from R × Rdz×(t−1) × At to R and A ⊆ Rℓ is regular closed3.

When a is discrete (e.g. Section 5.3.3.1), for all a<t, p(zt
i | z<t,a<t) are C2 functions from

R× Rdz×(t−1) to R.

We start by taking the log on both sides of (5.10) and let q := log p and q̂ := log p̂:

q̂(zt | z<t,a<t) = q(v(zt) | v(z<t),a<t) + log | detDv(zt)| . (5.14)

We then take the derivative w.r.t. zt on both sides:

Dt
z q̂(zt | z<t,a<t) = Dt

zq(v(zt) | v(z<t),a<t)Dv(zt) + η(zt) ∈ R1×dz , (5.15)

where Dt
zq denotes the Jacobian of q(zt | z<t,a<t) w.r.t. zt and analogously for Dt

z q̂. The term
η(zt) is the derivative of log | detDv(zt)| w.r.t. zt.

We differentiate4 yet once more w.r.t. aτ for some τ < t (assuming at is continuous for now)
and obtain

H t,τ
z,aq̂(zt | z<t,a<t) = Dv(zt)⊤H t,τ

z,aq(v(zt) | v(z<t),a<t) ∈ Rdz×da , (5.16)

where H t,τ
z,aq ∈ Rdz×da is the Hessian matrix of second derivatives w.r.t. zt and aτ and similarly for

H t,τ
z,aq̂.

3A set A ⊆ Rℓ is regular closed when it is equal to the closure of its interior, i.e. A◦ = A.
4This derivative is well defined on A (in the sense that it does not depend on its Ck extension) since A is regular closed.
We prove this general fact in Lemma 5.4 in the appendix.
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We now look more closely at some specific entry (i, ℓ) of the Hessian H t,τ
z,aq. We first see that

∂2

∂aτ
ℓ∂z

t
i

q(zt | z<t,a<t) = ∂2

∂aτ
ℓ∂z

t
i

dz∑
j=1

q(zt
j | z<t

Paz
j
,a<t

Paa
j
) (5.17)

= ∂

∂aτ
ℓ

dz∑
j=1

∂

∂zt
i

q(zt
j | z<t

Paz
j
,a<t

Paa
j
) (5.18)

= ∂

∂aτ
ℓ

∂

∂zt
i

q(zt
i | z<t

Paz
i
,a<t

Paa
i
) , (5.19)

where the first equality holds by (5.2) & (5.3) and a basic property of logarithms. It is clear that
(5.19) equals zero when ℓ ̸∈ Paa

i . This is a crucial observation, since it implies that whenever
Ga

i,ℓ = 0, we also have (H t,τ
z,aq)i,ℓ = 0. In other words, H t,τ

z,aq ⊆ Ga. Note that the same argument
can also be applied to get H t,τ

z,aq̂ ⊆ Ĝa.
Intuitive argument. We can start to see why regularizing Ĝ to be sparse might induce

disentanglement. Intuitively, a sparse Ĝa forces Dv(zt) to be sparse since otherwise the l.h.s. of
(5.20) will not be sparse:

H t,τ
z,aq̂(zt | z<t,a<t)︸ ︷︷ ︸

⊆Ĝa

= Dv(zt)⊤︸ ︷︷ ︸
forced to be sparse

H t,τ
z,aq(v(zt) | v(z<t),a<t)︸ ︷︷ ︸

⊆Ga

, (5.20)

And of course, the sparser Dv(zt) is, the more disentangled f̂ is, since Dvi,j = 0 everywhere
implies Vi,j = 0 under weak assumptions (Proposition 5.1). The above argument is not rigorous
and is provided only to build intuition. It will be made formal later on.

Sparse temporal dependencies. In what precedes, we made use of the sparsity of the graph
Ĝa to argue that Dv must also be sparse. We now show a similar intuition based on the sparsity
of Ĝz. Starting from (5.15), instead of differentiating w.r.t. aτ , we will differentiate w.r.t. zτ , for
some τ < t, which yields:

H t,τ
z,z q̂(zt | z<t,a<t) = Dv(zt)⊤H t,τ

z,zq(v(zt) | v(z<t),a<t)Dv(zτ ) ∈ Rdz×dz , (5.21)

where H t,τ
z,zq is the Hessian matrix of second derivatives of q w.r.t. zt and zτ , and analogously for

H t,τ
z,z q̂. Using an argument perfectly analogous to Equations (5.17) to (5.19), we can show that,

whenever Gz
i,j = 0, we also have (H t,τ

z,zq)i,j = 0, and similarly for Ĝz and H t,τ
z,z q̂. In other words,

H t,τ
z,zq ⊆ Gz and H t,τ

z,z q̂ ⊆ Ĝz. Therefore, analogously to (5.20), regularizing Ĝz to be sparse
intuitively should force Dv to be sparse as well, i.e. bringing us closer to disentanglement:

H t,τ
z,z q̂(zt | z<t,a<t)︸ ︷︷ ︸

⊆Ĝz

= Dv(zt)⊤︸ ︷︷ ︸
forced to be sparse

H t,τ
z,zq(v(zt) | v(z<t),a<t)︸ ︷︷ ︸

⊆Gz

Dv(zτ )︸ ︷︷ ︸
forced to be sparse

. (5.22)

The crux of our technical contribution in this work is to make the above arguments formal
and characterize precisely what will be the sparsity structure of Dv(z) (hence of V ) based on the
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ground-truth graph G (Theorems 5.1, 5.2 & 5.3). We also provide conditions on G to guarantee
complete disentanglement (Proposition 5.7).

5.3.2. Graph preserving maps

Theorems 5.1, 5.2, 5.3 & 5.5 will show how regularizing Ĝ to be sparse can force the dependency
graph of the entanglement map v to be sparse as well. These results characterize the functional
dependency structure of the entanglement map v as a function of the ground-truth graphG. This
link will be made precise thanks to the notion of graph preserving maps, which we define next.
Before going further, we need to set up the following notation.

Definition 5.10 (Aligned subspaces of Rm and Rm×n). Given a binary vector b ∈ {0, 1}m, let

Rm
b := {x ∈ Rm | bi = 0 =⇒ xi = 0} (5.23)

Given a binary matrixB ∈ {0, 1}m×n, let

Rm×n
B := {M ∈ Rm×n | Bi,j = 0 =⇒ Mi,j = 0} . (5.24)

Note that Rm
b and Rm×n

B are vector spaces under addition. This means that given a(1), . . . ,a(k) ∈
Rm
b , we have that span{a(1), . . . ,a(k)} ⊆ Rm

b , where span denotes the subspace of all linear
combinations. Similarly, given A(1), . . . ,A(k) ∈ Rm×n

B , we have that span{A(1), . . . ,A(k)} ⊆
Rm×n
B .

To start reasoning formally about what will be the result of regularizing Ĝa to be sparse, we
temporarily assume that Ĝa = Ga. With this assumption, we can interpret (5.20) as meaning that
Dv(zt)⊤ must preserve the “sparsity structure” of the matrix H t,τ

z,aq. This observation motivates the
following definitions, which will be central to our contribution.

Definition 5.11 (G-preserving matrix). Given G ∈ {0, 1}m×n, a matrix C ∈ Rm×m is G-
preserving when

C⊤Rm×n
G ⊆ Rm×n

G .

Definition 5.12 (G-preserving functions). Given G ∈ {0, 1}m×n, a function c : Rm → Rm is

G-preserving when its dependency graph C (Definition 5.2) isG-preserving.

Without surprise, a linear map c(z) := Cz whereC ∈ Rm×m isG-preserving (Definition 5.12)
if and only if the matrix C isG-preserving (Definition 5.11).

We now show that G-preserving functions can be defined alternatively in terms of a simple
condition on their dependency graph. This characterization of G-preserving functions is key to
understand how (partial) disentanglement results from sparsity regularization.

Proposition 5.3. A function c with dependency graph C (Definition 5.2) is G-preserving if and

only

Gi,· ̸⊆ Gj,· =⇒ Ci,j = 0, for all i, j .
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Proof We start by showing the “only if” statement. We suppose Gi,· ̸⊆ Gj,· and must now show
that Ci,j = 0. We know there exists k such that Gi,k = 1 but Gj,k = 0. Since C⊤Rm×n

G ⊆ Rm×n
G

and eie
⊤
k ∈ Rm×n

G , we must have that C⊤eie
⊤
k ∈ Rm×n

G . Since Gj,k = 0, we must have that
0 = (C⊤eie

⊤
k )j,k = Ci,j .

We now show the “if” statement. LetA ∈ Rm×n
G . Take some (i, j) such thatGi,j = 0. We must

now show that (C⊤A)i,j = 0. We have that (C⊤A)i,j =
∑

kCk,iAk,j . We now check that each
term in this sum must be zero. IfAk,j = 0, of course the corresponding term is zero. IfAk,j ̸= 0, it
implies that Gk,j = 1 and thus Gk,· ̸⊆ Gi,·. By assumption, this implies that Ck,i = 0 and thus
Ck,iAk,j = 0. Hence (C⊤A)i,j = 0 as desired.

We now characterize differentiableG-preserving functions in terms of their Jacobian matrices.

Lemma 5.1. A differentiable function c : Rm → Rm isG-preserving if and only if, for all z ∈ Rm,

Dc(z) isG-preserving.

Proof Assume c isG-preserving with dependency graph C. By Proposition 5.3, this is equivalent
to having that, for all i, j ∈ [n],

Gi,· ̸⊆ Gj,· =⇒ Ci,j = 0 . (5.25)

But by Proposition 5.1, this statement is equivalent to

Gi,· ̸⊆ Gj,· =⇒ ∀z ∈ Rm, Dc(z)i,j = 0 , (5.26)

which is equivalent to saying that Dc(z) isG-preserving for all z ∈ Rm (again by Proposition 5.3).

We will now show that G-preserving diffeomorphisms form a group under composition. To
do so, we start by showing that invertible G-preserving matrices form a group under matrix
multiplication (Proposition 5.4) and extend the result to diffeomorphisms in Proposition 5.5.

Proposition 5.4. InvertibleG-preserving matrices form a group under matrix multiplication.

Proof We must show that the set of invertible G-preserving matrices contains the identity, is closed
under matrix multiplication and is closed under inversion.

Clearly, I isG-preserving since I⊤Rm×n
G = Rm×n

G .
Let C1 and C2 beG-preserving. Then, C1C2 isG-preserving because

(C1C2)⊤Rm×n
G = C⊤

2 C
⊤
1 Rm×n

G ⊆ C⊤
2 Rm×n

G ⊆ Rm×n
G .

LetC beG-preserving and invertible. SinceC⊤ is invertible as a map from Rm×n to Rm×n, the
dimensionality of the subspace Rm×n

G must be equal to the dimensionality of C⊤Rm×n
G . This fact

combined with C⊤Rm×n
G ⊆ Rm×n

G imply that C⊤Rm×n
G = Rm×n

G . Hence Rm×n
G = (C−1)⊤Rm×n

G ,

159



i.e. C−1 isG-preserving.

We now extend the above results to diffeomorphisms using Proposition 5.1.

Proposition 5.5. The set ofG-preserving diffeomorphims forms a group under composition.

Proof We must show that the set ofG-preserving diffeomorphisms contains the identity, is closed
under matrix multiplication and is closed under inversion.

The first statement is trivial since the entanglement graph of the identity diffeomorphism is the
identity graph C := I , and of course it isG-preserving.

We now prove the second statement. Let c and c′ be two diffeomorphisms with dependency
graph C and C ′ respectively. By the chain rule, we have that

D(c ◦ c′)(z) = Dc(c′(z))Dc′(z) . (5.27)

By Lemma 5.1, we have that Dc(c′(z)) and Dc′(z) and G-preserving matrices and, by Proposi-
tion 5.4 their product must also beG-preserving. Hence D(c ◦ c′)(z) isG-preserving for all z and
thus, by Lemma 5.1, c ◦ c′ isG-preserving.

The proof of the third statement has a similar flavor. By the inverse function theorem, we have

Dc−1(z) = Dc(c−1(z))−1 . (5.28)

Moreover, by Lemma 5.1, Dc(c−1(z)) is G-preserving. Furthermore, its inverse is also
G-preserving by Proposition 5.4. Similarly to the previous step, because c−1 is C1, we can use
Lemma 5.1 to conclude that c−1 is alsoG-preserving.

5.3.3. Nonparameteric identifiability via auxiliary variables with sparse influ-
ence

In this section, we introduce our first identifiability results based on the sparsity of the graph
Ga which describes the structure of the dependencies between a<t and zt. We will see that, under
some assumptions, regularizing the learned graph Ĝa to be sparse will allow identifiability up to the
following equivalence class:

Definition 5.13 (a-consistency equivalence). We say two models θ := (f , p,G) and θ̃ := (f̃ , p̃, G̃)
satisfying Assumptions 5.1, 5.2 & 5.3 are a-consistent, denoted θ ∼acon θ̃, if and only if there exists

a permutation matrix P such that

(1) θ ∼diff θ̃ (Def. 5.5), and G̃a = PGa ; and

(2) the entanglement map v := f−1◦f̃ can be written as v = c◦P⊤ where c is aGa-preserving

diffeomorphism (Def. 5.12).
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The main difference between a-consistency (above definition) and permutation equivalence
(Definition 5.6), is that, instead of having v = d◦P⊤ where d is element-wise, we have v = c◦P⊤

where c isGa-preserving, which allows for some mixing between the latent factors. Importantly, a
Ga-preserving map typically has missing edges in its dependency graph, as Proposition 5.3 shows.
This means this equivalence relation imposes structure on the entanglement map v. Depending on
the structure ofGa, this can mean either complete, partial or no disentanglement whatsoever. Note
that the equivalence ∼perm is stronger than ∼acon, in the sense that θ ∼perm θ̂ =⇒ θ ∼acon θ̂. This is
because element-wise transformations d are alwaysG-preserving, for anyG.

We demonstrate in Appendix A.4 that the a-consistency relation is indeed an equivalence
relation, as claimed in the the above definition. This follows from the fact that the set of Ga-
preserving diffeomorphisms forms a group under composition (Proposition 5.5).

The first result provides conditions under which regularizing the learned graph Ĝa to be as
sparse as the ground-truth graph Ga will induce the learned model to be a-consistent with the
ground-truth one.

Theorem 5.1 (Nonparametric disentanglement from continuous a with sparse influence). Let the

parameters θ := (f , p,G) and θ̂ := (f̂ , p̂, Ĝ) correspond to two models satisfying Assumptions 5.1,

5.2, 5.3, & 5.4. Further assume that

(1) [Observational equivalence] θ ∼obs θ̂ (Def. 5.4);

(2) [Sufficient influence of a] The Hessian matrix H t,τ
z,a log p(zt | z<t,a<t) varies “suffi-

ciently”, as formalized in Assumption 5.6;

Then, there exists a permutation matrix P such that PGa ⊆ Ĝa. Further assume that

(3) [Sparsity regularization] ||Ĝa||0 ≤ ||Ga||0;

Then, θ ∼acon θ̂ (Def. 5.13).

The second assumption as well as a proof of this result is delayed to Section 5.3.7 for pedagogical
reasons. We now describe and provide intuition about each assumption one by one.
Observational equivalence. The first assumption simply requires that both models agree about the
observational model. In practice, this is achieved by fitting the model to data.
Sufficient influence. The second assumption requires that the “effect” of a<t on zt is “sufficiently
strong”. The assumption will be formalized and discussed in more details later in Sections 5.3.7 &
5.3.8, but we can already see that it concerns the Hessian matrix H t,τ

z,a log p that we saw earlier in
Eq. (5.20) of Sec. 5.3.1.
Sparsity regularization. The first two assumptions imply that the learned graph Ĝa is a supergraph of
some permutation of the ground-truth graph Ga. By adding the sparsity regularization assumption,
we have that the learned graph Ĝa is exactly a permutation of the ground-truth graph Ga and
that, more precisely, the learned model is ∼acon-equivalent to the ground-truth. This assumption
is satisfied if Ĝa is a minimal graph among all graphs that allow the model to exactly match the
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ground-truth generative distribution. In Sec. 5.5, we suggest achieving this in practice by adding a
sparsity penalty in the training objective, or by constraining the optimization problem.
a-consistency. The final conclusion of the result states that the learned model is ∼acon-equivalent to
the ground-truth, which means the entanglement map v := f−1 ◦ f̂ can be written as v = c ◦ P⊤

where c isGa-preserving. This is important since theGa-preserving condition imposes structure
on the entanglement graph V (Definition 5.3), as implied by Proposition 5.3. In other words, the
result predicts precisely which latent factors are expected to remain entangled.

Remark 5.1 (Inverse of v). We defined v to be the mapping from the learned to the ground-truth

representation, but in some context, it might be more telling to look at v−1, which maps from the

ground-truth to the learned representation. If v = c ◦ P⊤ where c isGa-preserving (as predicted

by Theorem 5.1), we know that its inverse is given by v−1 = P ◦ c−1 where c−1 isGa-preserving,

by closure under inversion (Proposition 5.5).

The following result is the same as the above but for discrete auxiliary variables a. This case is
very important to cover the case where a indexes sparse interventions targeting the latent factors,
which we discuss in more details in Section 5.3.3.1. Note that the only difference with the above
theorem is the “sufficient influence” assumption, which we will present formally in Section 5.3.7
together with a proof of the result.

Theorem 5.2 (Nonparametric disentanglement via discrete a with sparse influence). Let the param-

eters θ := (f , p,G) and θ̂ := (f̂ , p̂, Ĝ) correspond to two models satisfying Assumptions 5.1, 5.2,

5.3 & 5.4. Further assume that

(1) [Observational equivalence] θ ∼obs θ̂ (Def. 5.4);

(2) [Sufficient influence of a] The vector of derivatives Dt
z log p(zt | z<t,a<t) depends

“sufficiently strongly” on each component aℓ, as formalized in Assumption 5.7;

Then, there exists a permutation matrix P such that PGa ⊆ Ĝa. Further assume that

(3) [Sparsity regularization] ||Ĝa||0 ≤ ||Ga||0;

Then, θ ∼acon θ̂ (Def. 5.13).

We now provide a few examples to illustrate how Theorems 5.1 & 5.2 can be applied. Here, we
concentrate on the relationship between the graphGa and the entanglement graph V (Definition 5.3).
The question of whether or not the sufficient influence assumption is satisfied will be delayed to
Section 5.3.8, where the examples will be made more concrete by specifying latent models more
explicitly.

Example 5.2 (Ga = I implies complete disentanglement). Assume da = dz andGa = I , i.e. each

latent variable is affected by only one auxiliary variable, and each auxiliary variable affects only

one latent variable. The graphGa is depicted is Figure 5.3a andGz could be anything (see remark

below). Assuming the ground-truth transition model satisfies the sufficient influence assumption of

Theorem 5.1 or 5.2, we have that θ ∼obs θ̂ & ||Ĝa||0 ≤ ||Ga||0 =⇒ θ ∼acon θ̂. This means there
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exists a permutation matrix P such that Ĝa = PGa and such that the entanglement map is given

by v = c ◦ P⊤ where c is a Ga-preserving diffeomorphism (Definition 5.11). But since Ga = I ,

Proposition 5.3 tells us that the dependency graph of c is simply C := I and thus the entanglement

graph is V = P⊤, i.e. complete disentanglement holds. In fact, one could add more columns to

Ga (i.e. adding auxiliary variables) without changing the conclusion. Example 5.10 will provide a

concrete example satisfying the sufficient influence assumption of Theorem 5.2.

Remark 5.2 (Temporal dependencies are not necessary). The above example did not mention

anything about the temporal graphGz. That is because this graph could be anything, in fact, we

could be in the special case where there is no temporal dependencies whatsoever, i.e. T = 1 and

the latent model is simply p(z | a) =
∏dz

i=1 p(zi | a). In that case Theorems 5.1 & 5.2 could still be

applied to prove identifiability of the representation, as long as their assumptions hold. This remark

also applies to the next two examples.

Example 5.3 (Action targeting a single latent variable identifies it). Consider the situation depicted

in Figure 5.1 where z1 is the tree position, z2 is the robot position and z3 is the ball position

(dz = 3). Assume a ∈ R corresponds to the torque applied to the wheels of the robot (da = 1).

We thus have that Ga = [0, 1, 0]⊤, i.e. a affects only z2. For the sake of this example, Gz can be

anything, i.e. it does not have to be lower triangular like in Figure 5.1 (see remark above).

If the sufficient influence assumption of Theorem 5.1 or 5.2 is satisfied, we have that θ ∼obs

θ̂ & ||Ĝa||0 ≤ ||Ga||0 implies v = c ◦ P⊤ where P is a permutation and c is a Ga-preserving

diffeomorphism. Using Proposition 5.3, this means the dependency graph of c is given by

C =

∗ ∗ ∗0 ∗ 0
∗ ∗ ∗

 , sinceGa
2,· ̸⊆ Ga

1,· andGa
2,· ̸⊆ Ga

3,· , (5.29)

where “∗” indicates a potentially nonzero value. This means that one of the component of the

learned representation will be an invertible transformation of the ground-truth variable z2 (robot

position), while the other components could be a mixture of z1, z2 and z3. Figure 5.3b shows both

the graph Ga and the corresponding entanglement graph V assuming P = I . Example 5.8 will

make this example more concrete by specifying explicitly a latent model that satisfies the sufficient

influence assumption of Theorem 5.1.

Example 5.4 (Complete disentanglement from multi-target actions). Assume dz = 3 and da = 3
where Ga ∈ Rdz×da is given by Figure 5.3c and the temporal graph Gz could be anything (see

Remark 5.2 above). If the sufficient influence assumption of Theorem 5.1 or 5.2 is satisfied, then we

have that θ ∼obs θ̂ & ||Ĝa||0 ≤ ||Ga||0 implies v = c ◦ P⊤ where P is a permutation and c is a

Ga-preserving diffeomorphism. Proposition 5.3 implies that the dependency graph of c is simply

C := I because Ga
i,· ̸⊆ Ga

j,· for all distinct i, j. This means we have complete disentanglement

(Definition 5.7). Examples 5.9, 5.11 and 5.12 will explore more concrete instantiations of this
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zt−1
1

zt−1
2

zt−1
3

zt
1

zt
2

zt
3

Gz

ẑ1
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(f) Example 5.7

Figure 5.3. GraphsGa andGz from Examples 5.2, 5.3, 5.4, 5.5, 5.6 & 5.7 with their respective
entanglement graphs V (Definition 5.3) guaranteed by Theorems 5.1, 5.2, 5.3 & 5.5 (assuming
P = I for simplicity). Recall, that V describes the dependency structure of v = f−1 ◦ f̂ , which
maps ẑ to z. By Remark 5.1, the functional dependency graph of v−1 is exactly the same except for
z and ẑ being interchanged.

example by specifying concrete latent models satisfying the sufficient influence assumptions of

Theorems 5.1 and 5.2.

5.3.3.1. Unknown-target interventions on the latent factors. An important special case of
Theorem 5.2 is when at−1 corresponds to a one-hot vector indexing an intervention with unknown

targets on the latent variables zt. This specific kind of intervention has been explored previously
in the context of causal discovery where the intervention occurs on observed variables instead of
latent variables like in our case [Eaton and Murphy, 2007, Mooij et al., 2020, Squires et al., 2020,
Jaber et al., 2020, Brouillard et al., 2020, Ke et al., 2019]. Recently, multiple works in causal
representation learning have considered interventions on latent variables [Lachapelle et al., 2022,
Lippe et al., 2023b, Ahuja et al., 2023, Squires et al., 2023, Buchholz et al., 2023, von Kügelgen
et al., 2023, Zhang et al., 2023, Jiang and Aragam, 2023] (see Section 5.7 for more). Here is how
our framework can accommodate such interventions: Assume at−1 ∈ {⃗0, e1, ..., eda}, where each
eℓ is a one-hot vector. The action at−1 = 0⃗ corresponds to the observational setting, i.e. when
no intervention occurred, while at−1 = eℓ corresponds to the ℓth intervention. In that context, the
unknown graphGa describes which latents are targeted by the intervention, i.e. ℓ ∈ Paa

i if and only
if zi is targeted by the ℓth intervention. To see this, recall that, under Assumption 5.3, we have

p(zt
i | z<t,a<t) = p(zt

i | z<t
Paz

i
,at−1

Paa
i
) , (5.30)
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where we implicitly assumed that p(zt
i | z<t,a<t) does not depend on a<t−1. In the observational

setting, i.e. when at−1 = 0⃗, the conditional becomes p(zt
i | z<t, 0⃗). Now suppose we are in the ℓth

intervention, i.e. at−1 = eℓ. Then, if ℓ ̸∈ Paa
i , we have that at−1

Paa
i

= 0⃗, which means the conditional
is also p(zt

i | z<t, 0⃗), meaning variable zt
i is not targeted by the ℓth intervention. When ℓ ∈ Paa

i ,
we have at−1

Paa
i
̸= 0⃗ and thus the conditional is allowed to change freely, i.e. zt

i is targeted by the ℓth
intervention.

Importantly, the assumption thatGa is sparse corresponds precisely to the sparse mechanism

shift hypothesis from Schölkopf et al. [2021], i.e. that only a few mechanisms change at a time.

Thm. 5.2 thus provides precise conditions for when sparse mechanism shifts induce disentanglement.
Interestingly our theory covers both hard and soft interventions, as long as the sufficient influence
assumption is satisfied.

Remark 5.3 (Examples revisited). Examples 5.2, 5.3 and 5.4 can be revisited while keeping

in mind the “unknown-target intervention interpretation” in which Ga describes which latent

variable is targeted by each intervention. For instance, Example 5.2 tells us that if each latent

variable is targeted by a single-node intervention, then complete disentanglement is guaranteed.

Examples 5.10, 5.11 and 5.12 provides mathematically concrete latent models where a is interpreted

to be an intervention.

Remark 5.4 (Causal representation learning without temporal dependencies). The special case

where T = 1, i.e. no temporal dependencies, is of special interest. In that case, the latent variable

model is simply p(z | a) =
∏dz

i=1 p(zi | a). In other words, the causal graph relating the zi is empty.

In contrast, recent work in causal representation learning showed how to obtain disentanglement in

general latent causal graphical models without temporal dependencies, but are limited to single-

node interventions [Ahuja et al., 2023, Squires et al., 2023, Buchholz et al., 2023, von Kügelgen

et al., 2023, Zhang et al., 2023, Jiang and Aragam, 2023]. Although our framework with T = 1
assumes the causal graph between latent variables is empty, it allows for multi-node interventions

which are sometimes sufficient to disentangle (Example 5.12). See Section 5.3.8.2 for more on this.

5.3.4. Nonparametric identifiability via sparse temporal dependencies

This section is analogous to the previous one, but instead of leveraging the sparsity of Ga to
show identifiability, it leverages the sparsity ofGz, which describes the structure of the dependencies
between the latents from one time step to another. We will see that, under some assumptions, regu-
larizing the learned graph Ĝz to be sparse will allow identifiability up to the following equivalence
class:

Definition 5.14 (z-consistency equivalence). We say two models θ := (f , p,G) and θ̃ := (f̃ , p̃, G̃)
satisfying Assumptions 5.1, 5.2 & 5.3 are z-consistent, denoted θ ∼zcon θ̃, if and only if there exists

a permutation matrix P such that

165



(1) θ ∼diff θ̃ (Def. 5.5) and G̃z = PGzP⊤; and

(2) the entanglement map v := f−1◦f̃ can be written as v = c◦P⊤ where c is aGz-preserving

and (Gz)⊤-preserving diffeomorphism (Definition 5.12).

This relation can be shown to be an equivalence relation, as was the case for ∼acon. This is
shown in Appendix A.4. Analogously to ∼acon, the equivalence relation ∼zcon relates the structure of
the entanglement map v to the graphGz via the notion ofG-preserving maps. It is also true that
θ ∼perm θ̂ =⇒ θ ∼zcon θ̂.

The following result is analogous to Theorems 5.1 and 5.2 where, instead of regularizing Ĝa to
be sparse, we regularize Ĝz. The next theorem shows how this type of sparsity regularization can
induce the learned model to be z-consistent with the ground-truth one.

Theorem 5.3 (Nonparametric disentanglement via sparse temporal dependencies). Let the parame-

ters θ := (f , p,G) and θ̂ := (f̂ , p̂, Ĝ) correspond to two models satisfying Assumptions 5.1, 5.2,

5.3 & 5.4. Further assume that

(1) [Observational equivalence] θ ∼obs θ̂ (Def. 5.4);

(2) [Sufficient influence of z] The Hessian matrix H t,τ
z,z log p(zt | z<t,a<t) varies “suffi-

ciently”, as formalized in Assumption 5.8;

Then, there exists a permutation matrix P such that PGzP⊤ ⊆ Ĝz. Further assume that

(3) [Sparsity regularization] ||Ĝz||0 ≤ ||Gz||0;

Then, θ ∼zcon θ̂ (Def. 5.14).

The structure of the above theorem is very similar to Theorem 5.1 & 5.2. For example, we still
have a “sufficient influence" condition, but this time it concerns the Hessian matrix H t,τ

z,z log p which
we saw in Section 5.3.1, Equation (5.22). The conclusion is that both model will be z-consistent,
which means we recover the graph Gz up to permutation and have that the entanglement map v
has a dependency graph given by V = CP⊤ where C isGz- and (Gz)⊤-preserving. Section 5.3.7
introduces the sufficient influence assumption formally as well as a proof of Theorem 5.3.

We now build intuition via some minimal examples which shows how one can apply the above
theorem to draw links between the graphGz and the resulting entanglement graphV (Definition 5.3).
For now we simply assume that the assumption of sufficient influence (Assumption 5.8) is satisfied
and wait until Section 5.3.8.3 to present more concrete transition models satisfying it.

Example 5.5 (Disentanglement via independent factors with temporal dependencies). Consider

the situation depicted in Figure 5.3d where the graph Gz = I , i.e. the latents zt
i are dependent

in time but independent across dimensions. For this example, actions are unnecessary. Assuming

the sufficient influence assumption of Theorem 5.3 is satisfied, we have that θ ∼obs θ̂ & ||Ĝz||0 ≤
||Gz||0 =⇒ θ ∼zcon θ̂, meaning there exists a permutation P such that Ĝz = PGzP⊤ and such

that the entanglement map is given by v = c ◦ P⊤ where c isGz- and (Gz)⊤-preserving. Using

Proposition 5.3, one can verify that the dependency graph of c isC = I and thus V = P⊤, i.e. the
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learned representation is completely disentangled. Example 5.13 will provide a concrete transition

model where the sufficient influence assumption of Theorem 5.3 holds for this simple graphGz.

Example 5.6 (Disentanglement via sparsely dependent factors with temporal dependencies). The

previous examples assumed independent latents, i.e. Gz = I . Instead, we now consider a more

interesting “lower triangular” graphGz, as depicted in Figures 5.3e (This is the same graph as in

the tree-robot-ball example of Figure 5.1). Again using Proposition 5.3, one can verify that C = I

and thus V = P⊤, i.e. the learned representation is completely disentangled. Example 5.13 will

provide a concrete transition model where the sufficient influence assumption of Theorem 5.3 holds.

Example 5.7 (Partial disentanglement via temporal sparsity). Assume the same situation as previ-

ously, but add an additional edge from zt−1
B to zt

R (see Figure 5.3f). This could occur, for example,

if the robot tries to follow the ball, and is thus influenced by it. Using Proposition 5.3, one can show

that c beingGz- and (Gz)⊤-preserving means that its dependency graph is given by

C =

∗ 0 0
0 ∗ ∗
0 ∗ ∗

 . (5.31)

This means the robot and the ball remain entangled in the learned representation.

5.3.5. Combining sparsity regularization on Ĝa & Ĝz

A natural question at this point is whether Theorem 5.1 (or Theorem 5.2) can be combined with
Theorem 5.3 to obtain stronger guarantees. The answer is yes. In this section, we explain how this
can be done. We would like to show how combining assumptions of Theorem 5.1 and Theorem 5.3
can yield identifiability up to the following stronger equivalence relation.

Definition 5.15 ((a, z)-consistency equivalence). We say two models θ := (f , p,G) and θ̃ :=
(f̃ , p̃, G̃) satisfying Assumptions 5.1, 5.2 & 5.3 are (a, z)-consistent, denoted θ ∼z,a

con θ̃, if and only

if there exists a permutation matrix P such that

(1) θ ∼diff θ̃ (Def. 5.5) and G̃a = P⊤Ga and G̃z = P⊤GzP ; and

(2) the entanglement map v := f−1 ◦ f̃ can be written as v = c ◦ P⊤ where c is aGa-,Gz-

and (Gz)⊤-preserving diffeomorphism (Def. 5.12).

Of course, if assumptions of both theorems hold, we must have that θ ∼acon θ̂ and θ ∼zcon θ̂. As
one might guess, this implies θ ∼a,z

con θ̂, as the following proposition shows. The reason this result
is not completely trivial is that the permutations P given by ∼acon and ∼zcon might not be the same.
Its proof can be found in Appendix A.4.1.

Proposition 5.6. Let θ := (f , p,G) and θ̃ := (f̃ , p̃, G̃) be two models satisfying Assumptions 5.1,

5.2 & 5.3. We have θ ∼z,a
con θ̃ if and only if θ ∼acon θ̃ and θ ∼zcon θ̃.
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We can thus combine both Theorems 5.1 (or Theorem 5.2) with Theorem 5.3 to obtain stronger
guarantees. Practically, this means that regularizing both Ĝa and Ĝz to be sparse will lead to a
more disentangled representation, i.e. a sparser entanglement graph V , than if regularization was
applied on only Ĝa or only Ĝz.

5.3.6. Graphical criterion for complete disentanglement

The previous sections introduced results guaranteeing identifiability up to ∼acon, ∼zcon and ∼z,a
con

which all correspond to potentially partial disentanglement. This section provides an additional
assumption to guarantee identifiability up to ∼perm, i.e. complete disentanglement.

One can easily see from the definitions that θ ∼perm θ̂ holds precisely when θ ∼a,z
con θ̂ with

C = I . This condition can be achieved by making an extra assumption onG. This assumption is
taken directly from Lachapelle et al. [2022].

Assumption 5.5 (Graphical criterion, Lachapelle et al. [2022]). LetG = [Gz Ga] be a graph. For

all i ∈ {1, ..., dz},  ⋂
j∈Chz

i

Paz
j

 ∩
 ⋂

j∈Paz
i

Chz
j

 ∩
 ⋂

ℓ∈Paa
i

Cha
ℓ

 = {i} ,

where Paz
i and Chz

i are the sets of parents and children of node zi inGz, respectively, while Cha
ℓ

is the set of children of aℓ inGa.

The following proposition shows that whenG satisfies the above criterion, the set of models that
are ∼a,z

con-equivalent to θ is equal to the set of models that are ∼perm-equivalent to θ, thus allowing
complete disentanglement. See Appendix A.6 for a proof.

Proposition 5.7 (Complete disentanglement as a special case). Let θ := (f , p,G) and θ̂ :=
(f̂ , p̂, Ĝ) be two models satisfying Assumptions 5.1, 5.2 & 5.3. If θ ∼z,a

con θ̂ and G satisfies

Assumption 5.5, then θ ∼perm θ̂.

The above result shows that our general theory can guarantee complete disentanglement as a
special case. This is one way in which our work generalizes the work of Lachapelle et al. [2022], in
addition to relaxing the exponential family assumption. The following section explores how the
exponential family assumption fits into our nonparameteric theory and how it allows one to simplify
the “sufficient influence assumptions”. But before, we provide some example to illustrate when
Assumption 5.5 holds.

For example, the graphical criterion of Assumption 5.5 is trivially satisfied whenGz is diagonal,
since {i} = Pazi for all i (actions are not necessary here). This simple case amounts to having
mutual independence between the sequences z≤T

i , which is a standard assumption in the ICA
literature [Tong et al., 1990, Hyvarinen and Morioka, 2017, Klindt et al., 2021]. The illustrative
example we introduced in Fig. 5.1 has a more interesting “non-diagonal” graph satisfying our
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at-11

at-12

at-13

Ga

zt1

zt2

zt3

Cha1

Cha3

Figure 5.4. An example satisfying Assumption 5.5. Indeed, {z1} = Cha
1 ∩ Cha

2, {z2} =
Cha

1 ∩Cha
3 and {z3} = Cha

2 ∩Cha
3.

criterion. Indeed, we have that {T} = PazT , {R} = ChzR ∩PazR and {B} = ChzB. This example
is actually part of an interesting family of graphs that satisfy our criterion:

Proposition 5.8 (Sufficient condition for the graphical criterion). If Gz
i,i = 1 for all i (all nodes

have a self-loop) andGz has no 2-cycles, thenG satisfies Assumption 5.5.

Proof Self-loops guarantee i ∈ Pazi ∩Chzi for all i. Suppose j ∈ Pazi ∩Chzi for some i ̸= j. This
implies i and j form a 2-cycle, which is a contradiction. Thus {i} = Pazi ∩Chzi for all i.

5.3.7. Proofs of Theorems 5.1, 5.2 & 5.3 and their sufficient influence assump-
tions

In this section, we introduce the sufficient influence assumptions and use them to prove The-
orems 5.1, 5.2 & 5.3. In the next section (Section 5.3.8), we provide multiple examples to gain
intuition about the sufficient influence assumptions. Throughout, the following lemma will come in
handy.

Lemma 5.2 (Invertible matrix contains a permutation). Let L ∈ Rm×m be an invertible matrix.

Then, there exists a permutation σ such that Li,σ(i) ̸= 0 for all i, or in other words, P⊤ ⊆ L where

P is the permutation matrix associated with σ, i.e. Pei = eσ(i). Note that this implies PL and

LP have no zero on their diagonals.

Proof Since the matrix L is invertible, its determinant is non-zero, i.e.

det(L) :=
∑

σ∈Sm

sign(σ)
m∏

i=1

Li,σ(i) ̸= 0 , (5.32)

where Sm is the set of m-permutations. This equation implies that at least one term of the sum is
non-zero, meaning there exists a permutation σ such that, for all i, Li,σ(i) ̸= 0.
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5.3.7.1. Sufficient influence assumption of Theorem 5.1 and its proof. We start by introducing
the sufficient influence assumption of Theorem 5.1. Although it may seem terse at a first read, the
reason why it is necessary will become clear when we prove the theorem.

Assumption 5.6 (Sufficient influence of a (nonparametric/continuous)). For almost all z ∈ Rdz

(i.e. except on a set with zero Lebesgue measure) and all ℓ ∈ [da], there exists

{(t(r), τ(r), z(r),a(r))}
|Cha

ℓ |
r=1 ,

such that t(r) ∈ [T ], τ(r) < t(r), z(r) ∈ Rdz×(t(r)−1), a(r) ∈ At(r) and

span
{
H

t(r),τ(r)
z,a log p(z | z(r),a(r))·,ℓ

}|Cha
ℓ |

r=1
= Rdz

Cha
ℓ
.

Proof [of Theorem 5.1] Recall equation (5.20), which we derived in Section 5.3.1:

H t,τ
z,aq̂(zt | z<t,a<t)︸ ︷︷ ︸

⊆Ĝa

= Dv(zt)⊤ H t,τ
z,aq(v(zt) | v(z<t),a<t)︸ ︷︷ ︸

⊆Ga

. (5.33)

Notice that Assumption 5.6 holds only “almost everywhere”, i.e. on a set Rdz \ E0 where E0

has zero Lebesgue measure. Fix an arbitrary zt ∈ Rdz \ E0. For notational convenience, define

Λ(z, γ) := H t,τ
z,aq(v(z) | v(z<t),a<t) Λ̂(z, γ) := H t,τ

z,aq̂(z | z<t,a<t) ,

where γ := (t, τ, z<t,a<t). This allows us to rewrite (5.33) with a much lighter notation:

Λ̂(z, γ) = Dv(z)⊤Λ(z, γ) . (5.34)

Now, notice that the sufficient influence assumption (Assumption 5.6) requires that, for all ℓ ∈ [da]
there exists {γ(r)}

|Cha
ℓ |

r=1 such that span{Λ(z, γ(r))·,ℓ}
|Cha

ℓ |
r=1 = Rdz

Cha
ℓ
. We can thus write

Dv(z)⊤Rdz
Ga

·,ℓ
= Dv(z)⊤span{Λ(z, γ(r))·,ℓ}

|Cha
ℓ |

r=1 = span{Λ̂(z, γ(r))·,ℓ}
|Cha

ℓ |
r=1 ⊆ Rdz

Ĝa
·,ℓ

(5.35)

Since Dv(z) is invertible, there exists a permutation P (z) such that Dv(z)P (z) has no zero on
its diagonal (Lemma 5.2). Let C(z) := Dv(z)P (z). By left-multiplying (5.35) by P (z)⊤, we get

C(z)⊤Rdz
Ga

·,ℓ
⊆ Rdz

P (z)⊤Ĝa
·,ℓ
. (5.36)

We would like to show thatC(z) isGa-preserving. Notice how the above equation is almost exactly
the definition ofGa-preserving. All that is left to prove is that P (z)⊤Ĝa = Ga.

We start by showing P (z)⊤Ĝa ⊇ Ga. Take (i, ℓ) ∈ Ga. Since ei ∈ Rdz
Ga

·,ℓ
, equation (5.36)

implies
C(z)⊤ei = C(z)i,· ∈ Rdz

P (z)⊤Ĝa
·,ℓ
.

Since C(z)i,i ̸= 0 (all elements on its diagonal are nonzero), we must have that (i, ℓ) ∈ P (z)⊤Ĝa.
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Now, since ||P (z)⊤Ĝa||0 = ||Ĝa||0 ≤ ||Ga||0, we have P (z)⊤Ĝa = Ga. This implies

C(z)⊤Rdz×da
Ga ⊆ Rdz×da

Ga , (5.37)

i.e. C(z) is aGa-preserving matrix, as desired.
To recap, we now have that, for all z ∈ Rdz\E0, there exists a permutationP (z) s.t. Dv(z)P (z)

is Ga-preserving. We are not done yet, since, a priori, the permutation P (z) can be different for
different values of z, and we do not know what happens on the measure-zero set E0. What we
need to show is that there exists a permutation P such that, for all z, Dv(z)P is Ga-preserving.
Lemma 5.12 in Appendix A.5 shows precisely this, by leveraging the continuity of Dv(z) (v is a
diffeomorphism and thus C1).

Notice thatD(v◦P )(z) = Dv(Pz)P , which isGa-preserving everywhere. Using Lemma 5.1,
we conclude that the function c := v ◦ P isGa-preserving. This concludes the proof.

Remark 5.5 (Alternative view on sufficient influence assumptions). Assumption 5.6, and all suffi-

cient influence assumptions we present later on, can be thought of in terms of linear independence

of functions. By definition, a family of functions (f (i) : X → R)n
i=1 is linearly independent

when
∑

i αif
(i)(x) = 0 for all x ∈ X implies αi = 0 for all i. It turns out that Assump-

tion 5.6 is equivalent to requiring that, for all z ∈ Rdz and ℓ ∈ [da], the family of functions

(H t,τ
z,a log p(z | z<t,a<t)i,ℓ)i∈Cha

ℓ
(seen as functions of t, τ, z<t and a<t) is linearly independent. To

see this, note that, in general, (f (i) : X → R)n
i=1 is linearly independent iff there exist x1, ..., xn ∈ X

s.t. the vectors ((f (1)(xi), ..., f (n)(xi)))n
i=1 are linearly independent (see Appendix A.1 for a proof).

5.3.7.2. Sufficient influence assumption of Theorem 5.2 and its proof. One can see that, if a is
discrete, Theorem 5.1 cannot be applied because its sufficient influence assumption (Assumption 5.6)
refers to the cross derivative of log p w.r.t. zt and aτ , which, of course, is not well defined when a
is discrete. The discrete case is important to discuss interventions with unknown-targets as we did
in Section 5.3.3.1, which is why we have a specialized result (Theorem 5.2) which has an analogous
sufficient influence assumption based on partial differences.

Definition 5.16 (Partial difference). Let us define

∆τ,ϵ
a,ℓD

t
z log p(zt | z<t,a<t) := Dt

z log p(zt | z<t,a<t + ϵE(ℓ,τ))−Dt
z log p(zt | z<t,a<t) ,

where ϵ ∈ R and E(ℓ,τ) is a matrix with a one at entry (ℓ, τ) and zeros everywhere else.

One can see that ∆τ,ϵ
a,ℓD

t
z log p is essentially the discrete analog of (H t,τ

z,a log p)·,ℓ. Apart from
this difference, the sufficient influence assumption for discrete a is the same as for continuous a.
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Assumption 5.7 (Sufficient influence of a (nonparametric/discrete)). For almost all z ∈ Rdz (i.e.

except on a set with zero Lebesgue measure) and all ℓ ∈ [da], there exists

{(t(r), τ(r), z(r),a
<t
(r), ϵ(r))}

|Cha
ℓ |

r=1 ,

such that t(r) ∈ [T ], τ(r) < t(r), z(r) ∈ Rdz×(t(r)−1), a(r) ∈ At(r) , ϵ(r) ∈ R, (a(r))·,τ(r) + ϵ(r)eℓ ∈ A
and

span
{

∆τ(r),ϵ(r)
a,ℓ D

t(r)
z log p(z | z(r),a(r))

}|Cha
ℓ |

r=1
= Rdz

Cha
ℓ
.

We can now provide a proof of Theorem 5.2. Note that it is almost identical to the proof of
Theorem 5.1 except for the very first steps where we take a partial difference instead of a partial
derivative.
Proof [of Theorem 5.2] We recall equation (5.15) derived in Section 5.3.1:

Dt
z q̂(zt | z<t,a<t) = Dt

zq(v(zt) | v(z<t),a<t)Dv(zt) + η(zt) ∈ R1×dz . (5.38)

Now, instead of differentiating w.r.t. aτ
ℓ for some τ < t and ℓ ∈ [da], we are going to take a partial

difference. That is, we evaluate the above equation on at a<t and a<t + ϵE(ℓ,τ) and ϵ ∈ R, where
E(ℓ,τ) is a “one-hot matrix”, while keeping everything else constant, and take the difference. This
yields:

[Dt
z q̂(zt | z<t,a<t + ϵE(ℓ,τ))−Dt

z q̂(zt | z<t,a<t)]⊤ (5.39)

= Dv(zt)⊤[Dt
zq(v(zt) | v(z<t),a<t + ϵE(ℓ,τ))−Dt

zq(v(zt) | v(z<t),a<t)]⊤

∆τ,ϵ
a,ℓD

t
z q̂(zt | z<t,a<t)⊤ = Dv(zt)⊤∆τ,ϵ

a,ℓD
t
zq(v(zt) | v(z<t),a<t)⊤ , (5.40)

where we used the notation for partial differences introduced in Definition 5.16. Notice that
the difference on the left is ⊆ Ĝa

·,ℓ and the difference on the right is ⊆ Ga
·,ℓ. This equation is

thus analogous to (5.33) from the continuous case. For that reason, we can employ a completely
analogous strategy. Hence, we define

Λ̂(zt, γ)·,ℓ := ∆τ,ϵ
a,ℓD

t
z q̂(zt | z<t,a<t)⊤ Λ(zt, γ)·,ℓ := ∆τ,ϵ

a,ℓD
t
zq(v(zt) | v(z<t),a<t)⊤ ,

where γ = (t, τ, z<t,a<t, ϵ⃗). This notation allows us to rewrite (5.40) more compactly as

Λ̂(zt, γ)︸ ︷︷ ︸
⊆Ĝa

= L(zt)⊤ Λ(zt, γ)︸ ︷︷ ︸
⊆Ga

. (5.41)

From here, the rest of the argument is exactly analogous to the proof of Theorem 5.1.
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5.3.7.3. Sufficient influence assumption of Theorem 5.3 and its proof. We now introduce the
sufficient influence assumption of Theorem 5.3, which showed how regularizing the temporal
dependency graph Ĝz to be sparse can result in disentanglement. Again, it is very similar to other
sufficient influence assumptionss we saw so far.

Assumption 5.8 (Sufficient influence of z (nonparameteric)). For almost all z ∈ Rdz (i.e. except

on a set with zero Lebesgue measure), there exists

{(t(r), τ(r), z(r),a(r))}||Gz ||0
r=1 ,

such that t(r) ∈ [T ], τ(r) < t(r), z(r) ∈ Rdz×(t(r)−1), a(r) ∈ At(r) , z = z
τ(r)
(r) and

span
{
H

t(r),τ(r)
z,z q(z | z(r),a(r))

}||Gz ||0

r=1
= Rdz

Gz .

Proof [of Theorem 5.3] We recall equation (5.22) derived in Section 5.3.1:

H t,τ
z,z q̂(zt | z<t,a<t)︸ ︷︷ ︸

⊆Ĝz

= Dv(zt)⊤ H t,τ
z,zq(v(zt) | v(z<t),a<t)︸ ︷︷ ︸

⊆Gz

Dv(zτ ) . (5.42)

This equation holds for all pairs of zt and zτ in Rdz . We can thus evaluate it at a point such that
zt = zτ , which yields

H t,τ
z,z q̂(zt | z<t,a<t) = Dv(zt)⊤H t,τ

z,zq(v(zt) | v(z<t),a<t)Dv(zt) . (5.43)

Recall that Assumption 5.8 holds for all zt ∈ Rdz \ E0 where E0 has Lebesgue measure zero. Fix
an arbitrary zt ∈ Rdz \ E0 and set zτ = zt. Let us define

Λ(zt, γ) := H t,τ
z,zq(v(zt) | v(z<t),a<t) Λ̂(zt, γ) := H t,τ

z,z q̂(zt | z<t,a<t) ,

where γ := (t, τ, z<t
−τ ,a

<t) and z<t
−τ is z<t but without zτ . We can now rewrite (5.43) compactly as

Λ̂(zt, γ) = Dv(zt)⊤Λ(zt, γ)Dv(zt) . (5.44)

Now, notice that the sufficient influence assumption (Assumption 5.8) requires that, there exists
{γ(r)}||Gz ||0

r=1 such that span{Λ(zt, γ(r))}||Gz ||0
r=1 = Rdz×dz

Gz . We can thus write

Dv(zt)⊤span{Λ(zt, γ(r))}||Gz ||0
r=1 Dv(zt) = span{Λ̂(zt, γ(r))}||Gz ||0

r=1 ⊆ Rdz×dz

Ĝz
(5.45)

=⇒ Dv(zt)⊤Rdz×dz
Gz Dv(zt) ⊆ Rdz×dz

Ĝz
(5.46)

Since Dv(z) is invertible, there exists a permutation P (z) such that Dv(z)P (z) has no zero on its
diagonal (Lemma 5.2). Let C(z) := Dv(z)P (z). If we left and right-multiply (5.46) by P (z)⊤

and P (z), respectively, we obtain

C(zt)⊤Rdz×dz
Gz C(zt) ⊆ Rdz×dz

P (z)⊤ĜzP (z) . (5.47)
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We now show that Gz ⊆ P (z)⊤ĜzP (z). Take (i, j) ∈ Gz. Since eie
⊤
j ∈ Rdz×dz

Gz , equation
(5.47) implies

C(zt)⊤eie
⊤
j C(zt) = (C(zt)i,·)⊤C(zt)j,· ⊆ Rdz×dz

P (z)⊤ĜzP (z) (5.48)

Since C(zt)i,iC(zt)j,j ̸= 0 (recall the diagonal of C(zt) has no zero), we must have (i, j) ∈
P (z)⊤ĜzP (z). This shows thatGz ⊆ P (z)⊤ĜzP (z).

Since ||P (z)⊤ĜzP (z)||0 = ||Ĝz||0 ≤ ||Gz||0, we must have Gz = P (z)⊤ĜzP (z), which
yields

C(zt)⊤Rdz×dz
Gz C(zt) ⊆ Rdz×dz

Gz . (5.49)

We are now going to show that the above implies that C(zt) is both Gz-preserving and (Gz)⊤-
preserving. Start by rewriting (5.48) as follows:

for all (i, j) ∈ Gz, (C(zt)i,·)⊤C(zt)j,· ⊆ Rdz×dz
Gz . (5.50)

We start by showingGz-preservation. To do so, we leverage the characterization of Proposition 5.3.
We must show that Gz

i,· ̸⊆ Gz
j,· implies C(zt)i,j = 0. Because Gz

i,· ̸⊆ Gz
j,·, there must exists k

s.t. Gz
i,k = 1 andGz

j,k = 0. We thus have, by (5.50), that (C(zt)i,·)⊤C(zt)k,· ⊆ Rdz×dz
Gz . Because

Gz
j,k = 0, we haveC(zt)i,jC(zt)k,k = 0. But sinceC(zt)k,k ̸= 0, we must have thatC(zt)i,j = 0,

as desired. To show (Gz)⊤-preservation, one can use a completely analogous argument.
We showed that C(zt) is Gz-preserving and (Gz)⊤-preserving. It is easy to verify that this

is equivalent to being [Gz (Gz)⊤]-preserving (where [· ·] stands for column concatenation). This
remark will be useful below.

Similarly to the proof of Theorem 5.1, we must now show that there exists a single permutation
that works for all zt ∈ Rdz . To achieve this, we use Lemma 5.12 with G := [Gz (Gz)⊤] and
L(z) := Dv(z). This allows us to say that there exists a permutation P such that Dv(z)P is
[Gz (Gz)⊤]-preserving for all z (not “almost all”).

Notice that D(v ◦ P )(z) = Dv(Pz)P , which is [Gz (Gz)⊤]-preserving everywhere. Using
Lemma 5.1, we conclude that the function c := v ◦ P is [Gz (Gz)⊤]-preserving.

5.3.8. Examples to illustrate the scope of the theory

In this section, we provide several examples in order to gain better intuition as to when our
results apply. Specifically, we will provide mathematically concrete examples of latent models
p(zt | z<t,a<t) illustrating the various sufficient influence assumptions we introduced. All these
examples are summarized in Table 5.2.
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Even though our results are nonparametric, we will concentrate on the special case of Gaussian
models which are useful to get a good intuition of what the sufficient influence assumptions mean.
The following simple lemma will be useful in the following examples. We present it without proof
as it can be derived from simple computations.

Lemma 5.3. Let p(z) = N (z;µ,Σ) where µ ∈ Rdz and Σ := diag(σ2
1, ..., σ

2
dz

). Then,

Dz log p(z) = −
[
(z1 − µ1)/σ2

1, . . . , (zdz − µdz)/σ2
dz

]
∈ R1×dz . (5.51)

5.3.8.1. Continuous auxiliary variable (Theorem 5.1). We start by illustrating Assumption 5.6
from Theorem 5.1. Example 5.8 assumes we observe continuous actions that targets each latent
factor individually while Example 5.9 gives a multi-target example.

Example 5.8 (Sufficient influence for continuous single-target actions). We make Example 5.3 more

concrete by specifying a latent transition model explicitly. Recall the situation depicted in Figure 5.1

where z1 is the tree position, z2 is the robot position and z3 is the ball position (dz = 3). Assume

a ∈ [−1, 1] corresponds to the amount of torque applied to the wheels of the robot. We thus have

thatGa = [0, 1, 0]⊤, i.e. a affects only the robot position z2. For this example,Gz can be anything.

Let p(zt | zt−1,a) = N (zt;µ(zt−1,a), σ2I) where

µ(zt−1,a) := zt−1 + g(zt−1) + a ·Ga .

where g : Rdz → Rdz is some function that satisfies the dependency graphGz (e.g. g(z) := Wz

whereW ∈ Rdz×dz
Gz ). If no torque is applied (a = 0), then the position of the robots is determined

by the dynamics of the system. However, adding positive or negative torque (a ̸= 0) nudges the

robot to the right or to the left. Using Lemma 5.3, we can compute that

H t
z,a log p(zt | zt−1,a) = [0, 1/σ2, 0]⊤ , (5.52)

which of course spans R3
{2} and thus Assumption 5.6 holds.

Example 5.9 (Sufficient influence for continuous multi-target actions). We make Example 5.4

more concrete by specifying an explicit latent model. Recall thatGa is given by Figure 5.3c with

dz = da = 3. Assume there are no temporal dependencies (T = 1), that a ∈ R3 and that the latent

model is given by p(z | a) = N (z;µ(a), σ2I) where

µ(a) :=

a1

a2
1

0

+

a2

0
a2

2

+

 0
a3

a2
3

 . (5.53)
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Using Lemma 5.3 we can compute

Hz,aq(z | a) = 1
σ2

 1 1 0
2a1 0 1
0 2a2 2a3

 . (5.54)

Consider ℓ = 1 so that Cha
1 = {1, 2}. We can see that Hz,aq(z | a = 0)·,1 = [1, 0, 0]⊤ and

Hz,aq(z | a = e1)·,1 = [1, 2, 0]⊤ span R3
{1,2}. Analogous conclusions can be reached also for

ℓ = 2, 3, which shows Assumption 5.6 holds.

Now suppose that we instead had that µ(a) was a linear map, i.e. µ(a) := Wa where

W ∈ Rdz×da
Ga . This would imply that Hz,aq(z | a) ∝W , which means it cannot satisfy the sufficient

influence assumption (unless ||Ga
·,ℓ||0 ≤ 1 for all ℓ).

5.3.8.2. Discrete auxiliary variable or interventions (Theorem 5.2). We now provide three
concrete examples of latent models p(zt | z<t,a<t) that satisfy Assumption 5.7, from Theorem 5.2.
Here, we interpret the discrete auxiliary variable a as an intervention index, as discussed in
Section 5.3.3.1, but note that other interpretations are possible (like a as an action). Recall that our
identifiability result do not require the knowledge of the targets of the interventions, these can be
learned.

Example 5.10 shows how single target interventions can be used to obtain complete disentangle-
ment without temporal dependencies, Example 5.11 shows how multi-target interventions can be
leverage for disentanglement if temporal dependencies are present and Example 5.11 shows how
grouped multi-target interventions allow disentanglement even when there is no time dependencies
(Remark 5.6).

Example 5.10 (Single-target interventions for complete disentanglement without time). We make

Example 5.2 more concrete by specifying an explicit latent model. Assume da = dz and that a ∈
A := {0, e1, . . . , eda} is interpreted to be an intervention index (see Section 5.3.3.1). Furthermore,

Example 5.2 assumedGa = I , i.e. each latent factor is targeted once by an intervention that targets

only this factor (the example actually allowed to add arbitrary columns to Ga, i.e. adding more

interventions, without compromising complete disentanglement). Assume there are no temporal

dependencies, i.e. T = 1, and that p(z | a) := N (z;µ(a), diag(σ2(a))) with

µ(a) := µ⊙ a and σ2(a) := 1 + δ ⊙ a , (5.55)

where ⊙ denotes the Hadamard product (a.k.a. element-wise product), µ ∈ Rdz is the vector of

means for each intervention and δ ∈ Rdz is the vector of shifts in variance for all interventions.

Thus, in the observational setting (a = 0), we have µ(a) = 0 and σ(a) = 1 while in the ℓth

intervention (a = eℓ), the mean and variance of the targeted latent shift while the others stay

the same, i.e. µ(a) = µℓeℓ and σ2(a) = 1 + δeℓ (assume the shifted variance is > 0). Using
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Lemma 5.3, we can compute

∆ϵ=1
a,ℓ Dz log p(z | a = 0) := Dz log p(z | a = eℓ)−Dz log p(z | a = 0) = µℓ + δℓzℓ

1 + δℓ

eℓ ,

which must span Rdz

{ℓ} unless µℓ + δℓzℓ = 0. But note that when, for all ℓ, µℓ ̸= 0 or δℓ ̸= 0 (i.e. all

interventions truly have an effect), the set {z ∈ Rdz | µℓ + δℓzℓ = 0 for some ℓ} has zero Lebesgue

measure in Rdz , which is allowed by Assumption 5.7.

Remark 5.6 (Potential issues with multi-target interventions without time). What if an intervention

targets more than one latent at a time? Can it still satisfy the sufficient influence assumption? We

will now see that, without time-dependencies (T = 1), it is impossible. Consider the simple situation

where dz = 3, da = 1, a ∈ {0, 1} andGa = [1, 1, 0]⊤, i.e. there is a single intervention targeting

z1 and z2. In that case, there is a single possible difference vector which is

∆ϵ=1
a Dz log p(z | a = 0) = Dz log p(z | a = 1)−Dz log p(z | a = 0) ∈ Rdz

{1,2} .

Since this is the only difference vector, we can see that we cannot span the 2-dimensional space

Rdz

{1,2}. Therefore, to leverage multi-target interventions in our framework, more “variability” is

required. Example 5.11 below shows how temporal dependencies can provide this additional

variability while Example 5.12 shows how having “groups” of interventions known to have the

same (unknown) targets can also provide the required variability.

Example 5.11 (Multi-target interventions for complete disentanglement with time). We make

Example 5.4 more concrete by specifying an explicit latent model that satisfies Assumption 5.7.

Recall dz = 3, da = 3 andGa is depicted in Figure 5.3c. This time, we assume there are temporal

dependencies, i.e. T > 1 andGz is non-trivial. Suppose a ∈ A := {0, e1, e2, e3} where eℓ is the

ℓth one-hot and we interpret 0 to correspond to the observational setting and eℓ to correspond to

the ℓth intervention. Recall that in this interpretation,Ga describes which latent variable is targeted

by each intervention. Let p(zt | zt−1,a) = N (zt;µ(zt−1,a), σ2I) where

µ(zt−1,a) := zt−1 + (1−Gaa)⊙ g(zt−1) ,

where g : Rdz → Rdz is some function respecting the graph Gz (e.g. g(z) = Wz where

W ∈ Rdz×dz
Gz ). The observational dynamics is then µ(zt,a = 0) = zt−1 + g(zt−1) and the

interventional settings correspond to zeroing out the elements of g(zt−1) targeted by the intervention.

Using Lemma 5.3, we can compute

∆ϵ=1
a,ℓ Dzq(zt | zt−1,a = 0)

= Dzq(zt | zt−1,a = eℓ)−Dzq(zt | zt−1,a = 0) = − 1
σ2G

a
·,ℓ ⊙ g(zt−1) .

One can see that, as soon as the image of g spans Rdz , Assumption 5.7 is satisfied since we can

choose values z(1), . . . ,z(dz) ∈ Rdz such that span{g(z(1)), . . . , g(z(dz))} = Rdz , which implies
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span{Ga
·,ℓ ⊙ g(z(1)), . . . ,Ga

·,ℓ ⊙ g(z(dz))} = Rdz

Cha
ℓ
. An example of transition function g satisfying

this property is g(z) := Wz whereW ∈ Rdz×dz
Gz is invertible.

Note that even if the temporal dependencies are not sparse, they are still helpful for identifiability

as they make it more likely to satisfy the sufficient influence assumption (Assumption 5.7).

Example 5.12 (Grouped multi-target interventions for disentanglement without time). In this

example, we assume there are no temporal dependencies (T = 1) and that the learner has access to

da groups of interventions where the interventions belonging to the ℓth group are known to target

the same latent variables given byGa
·,ℓ (these targets are unknown). Here is how this setting can be

accommodated by our framework: given we have da groups of interventions where the ℓth group

contains kℓ interventions, we set A := {0, 1e1, ..., k1e1, 1e2, ..., k2e2, ..., kdaeda}. In this setting,

a = jeℓ corresponds to the jth intervention of the ℓth group. Moreover, the sufficient influence

assumption requires that the interventions within a group ℓ span Rdz

Cha
ℓ
. More precisely, we need

span{∆ϵ
a,ℓDz log p(z | a = 0)}kℓ

ϵ=1 = Rdz

Cha
ℓ
.

5.3.8.3. Temporal dependencies (Theorem 5.3). Finally, we provide an example (Example 5.13)
where temporal dependencies alone (no auxiliary variable a) is enough to disentangle. We start
with an important remark about the sufficient influence assumption of Theorem 5.3.

Remark 5.7 (Auxiliary variables or non-Markovianity are required). An important observation is

that, if the transition model does not have an auxiliary variable a and is Markovian, i.e. p(zt |
z<t,a<t) = p(zt | zt−1), then Assumption 5.8 cannot be satisfied (except in trivial circumstances).

To see this, simply note that, in that case, H t,t−1
z,z q(zt | zt−1) depends only on zt−1, which is forced

to be equal to zt. This means the span of the Hessian must be at most one-dimensional, which

means that the assumption cannot hold as soon as ||Gz||0 > 1. Therefore, when no auxiliary

variable a is observed, Assumption 5.8 requires the transition model to be non-Markovian. In

Example 5.13, we provide a concrete example of transition model without auxiliary variable a that

satisfies this assumption. We will also see in Section 5.4 that if the transition model p(zt | zt−1) is

in the exponential family, this assumption can be relaxed so that non-Markovianity is not required

anymore.

Example 5.13 (Sparse temporal dependencies for disentanglement without auxiliary variables).
We continue with Examples 5.5 & 5.6 which were based on the graphs Gz depicted in Figures

5.3d & 5.3e, respectively. Assume that no action is observed, i.e. we can only leverage the sparsity

of Gz to disentangle. Examples 5.5 & 5.6 already showed that these graph structures allow for

complete disentanglement, as long as the sufficient influence of z assumption (Assumption 5.8) is

satisfied. We now provide concrete transition models p(zt | z<t) that satisfies this requirement.

Similarly to previous examples, assume p(zt | z<t) = N (zt | µ(zt−1, zt−2), σ2I) where

µ(zt−1, zt−2) := zt−1 +W (zt−2)zt−1 , (5.56)
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whereW : Rdz → Rdz×dz
Gz is some function of zt−2. Using Lemma 5.3, we can derive

H t,t−1
z,z q(zt | z<t) = 1

σ2 [I +W (zt−2)] . (5.57)

Thus Assumption 5.8 holds when there exists {zt−2
(r) }

||Gz ||0
r=1 such that

span{I +W (zt−2
(r) )}||Gz ||0

r=1 = Rdz×dz
Gz . (5.58)

One can directly see that, if W (zt−2) was actually constant in zt−2, the assumption could not

hold (unless ||Gz||0 ≤ 1). This case would correspond to a simple linear model of the form

µ(zt−1) := zt−1 +Wzt−1. Our theory suggests this transition function is “too simple” to allow

disentanglement.

Nevertheless, we can find examples satisfying (5.58). For example, ifGz = I , we can take

W (z) =

z1 0 0
0 z2 0
0 0 z3

 (5.59)

and see that the family of functions (1 + z1, 1 + z2, 1 + z3) is linearly independent (when seen

as functions from R3 to R). By Lemma 5.5 in the appendix, this is equivalent to the existence of

z(1), z(2), z(3) ∈ Rdz such that (5.58) holds (see also Remark 5.5). In other words, the sufficient

influence assumption holds. In the case whereGz is lower triangular like in Figure 5.3e, one can

take

W (z) =

z1 0 0
z2

2 z2 0
z3

3 z2
3 z3

 (5.60)

and see that the family of functions (1 + z1, 1 + z2, 1 + z3, z
2
2 , z

2
3 , z

3
3) are linearly independent,

which similarly implies the existence of z(1), . . . ,z(6) ∈ Rdz such that (5.58) holds.

Example 5.15 will show how one can leverage the exponential family assumption to allow for
Markovianity even without auxiliary variables.

5.4. Partial disentanglement via mechanism sparsity in exponen-
tial families

The goal of this section is to understand how restricting the transition model to be in the expo-

nential family allows us to weaken the sufficient influence assumption of Theorem 5.3. Section 5.4.1
introduces the exponential family assumption. Section 5.4.2 follows Khemakhem et al. [2020a]
and shows that this additional assumption guarantees that the entanglement map v is “quasi-linear”,
which means v(z) := s−1(Ls(z) + b), where L is a matrix and s is an element-wise invertible
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function. Section 5.4.3 will introduce an identifiability result analogous to Theorem 5.3 for sparse
Ĝz that leverages the quasi-linearity of v to weaken Assumption 5.8 (sufficient influence of z).
We also briefly discuss an additional result from Appendix B.4 that shows connections between
the nonparametric sufficient influence assumptions of this work (Assumptions 5.7 & 5.8) and their
counterparts in Lachapelle et al. [2022] (Assumptions 5.11 & 5.12).

5.4.1. Exponential family latent transition models

We will assume that the conditional densities p(zt
i | z<t,a<t) are from an exponential fam-

ily [Wainwright and Jordan, 2008]:

Assumption 5.9 (Exponential family transition model). For all i ∈ [dz], we have

p(zt
i | z<t,a<t) = hi(zt

i) exp{si(zt
i)⊤λi(z<t,a<t)− ψi(z<t,a<t)} . (5.61)

Well-known distributions which belong to this family include the Gaussian and beta distribution.
In the Gaussian case, the sufficient statistic is si(z) := (z, z2) and the base measure is hi(z) := 1√

2π
.

The function λi(z<t,a<t) outputs the natural parameter vector for the conditional distribution and
can be itself parametrized, for instance, by a multi-layer perceptron (MLP) or a recurrent neural
network (RNN). We will refer to the functions λi as the mechanisms or the transition functions. In
the Gaussian case, the natural parameter is two-dimensional and is related to the usual parameters
µ and σ2 via the equation (λ1, λ2) = ( µ

σ2 ,− 1
2σ2 ). We will denote by k the dimensionality of the

natural parameter and that of the sufficient statistic (which are equal). Thus, k = 2 in the Gaussian
case. The remaining term ψi(z<t,a<t) acts as a normalization constant.

We define λ(z<t,a<t) ∈ Rkdz to be the concatenation of all λi(z<t,a<t) and similarly for
s(zt) ∈ Rkdz . Similarly to the nonparameteric case, the learnable parameters are θ := (f ,λ,G).
Note that throughout, we assume that the sufficient statistic s is not learned and known in advance.
With this notation, we can write the full transition model as

p(zt | z<t,a<t) = h(zt) exp{s(zt)⊤λ(z<t,a<t)− ψ(z<t,a<t)} , (5.62)

where h :=
∏dz

i=1 hi and ψ =
∑dz

i=1 ψi.

Remark 5.8 (Applying nonparametric identifiability results to exponential families). One can apply

the nonparametric results (Theorems 5.1, 5.2 & 5.3) to models satisfying the exponential family

assumption. In fact, all examples of Section 5.3.8 were Gaussians and thus are in the exponential

family.
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5.4.2. Conditions for quasi-linear identifiability

In this section, we follow Khemakhem et al. [2020a] and show that the exponential family
assumption combined with an additional sufficient variability assumption allows to go from identifi-
ability up to diffeomorphism (Definition 5.5) to identifiability up to quasi-linearity, which we define
next:

Definition 5.17 (Quasi-linear equivalence). We say two models θ := (f ,λ,G) and θ̃ := (f̃ ,λ, G̃)
satisfying Assumptions 5.1, 5.2 & 5.9 are equivalent up to quasi-linearity, denoted θ ∼lin θ̃, if and

only if θ ∼diff θ̃ and there exist an invertible matrix L ∈ Rkdz×kdz and a vector b ∈ Rkdz such that

the map v := f−1 ◦ f̃ satisfies

s(v(z)) = Ls(z) + b, ∀z ∈ Rdz . (5.63)

If the sufficient statistic s is invertible, one obtains

v(z) = s−1(Ls(z) + b), ∀z ∈ Rdz . (5.64)

Equation (5.64) is particularly interesting, as it says that the mapping relating both representa-
tions is “almost” linear in the following sense: although the map is not necessarily linear because the
sufficient statistic s might not be, the “mixing” between components is linear. Indeed, notice that
the sufficient statistic s and its inverse operates “element-wise”. The mixing between components
is only due to the matrix L. This specific form simplifies a few steps in the identifiability proof,
which might explain the popularity of this assumption in the literature on nonlinear ICA [Hyvarinen
and Morioka, 2016, Khemakhem et al., 2020a,b, Hälvä and Hyvärinen, 2020, Morioka et al., 2021,
Yang et al., 2021, Lachapelle et al., 2022, Liu et al., 2023, Xi and Bloem-Reddy, 2023].

The following theorem provides conditions to guarantee identifiability up to quasi-linearity.
This is an adaptation and minor extension of Theorem 1 from Khemakhem et al. [2020a]. For
completeness, we provide a proof in Appendix B.2.

Theorem 5.4 (Conditions for linear identifiability - Adapted from Khemakhem et al. [2020a]). Let

θ := (f ,λ,G) and θ̂ := (f̂ , λ̂, Ĝ) be two models satisfying Assumptions 5.1, 5.2 & 5.9. Further

assume that

(1) [Observational equivalence] θ ∼obs θ̂ (Definition 5.4);

(2) [Minimal sufficient statistics] For all i, the sufficient statistic si is minimal (see below).

(3) [Sufficient variability] The natural parameter λ varies “sufficiently" as formalized by

Assumption 5.10 (see below).

Then, θ ∼lin θ̂ (Def. 5.17).

The “minimal sufficient statistics” assumption is a standard one saying that si is defined
appropriately to ensure that the parameters of the exponential family are identifiable (see e.g.
Wainwright and Jordan [2008, p. 40]). See Definition 5.20 for a formal definition of minimality.
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The last assumption is sometimes called the assumption of variability [Hyvärinen et al., 2019], and
requires that the conditional distribution of zt depends “sufficiently strongly” on z<t and/or a<t.
We stress the fact that this assumption concerns the ground-truth data generating model θ.

Assumption 5.10 (Sufficient variability in exponential families). There exist (z(r),a(r))kdz
p=0 in their

respective supports such that the kdz-dimensional vectors (λ(z(r),a(r))− λ(z(0),a(0)))kdz
r=1 are

linearly independent.

Notice that the z(r) represent values of z<t for potentially different values of t and can thus have
different dimensions.

The following example builds on Example 5.10 and shows that the sufficient variability of the
above theorem might hold or not. The first case is interesting since it guarantees that v is linear
while the second is interesting because it showcases a situation where the theory of Khemakhem
et al. [2020a] and Lachapelle et al. [2022] do not apply (since they both rely on the above theorem)
thus highlighting the importance of our nonparametric extension.

Example 5.14 (Satisfying or not the sufficient variability assumption of Theorem 5.4). We recall

Example 5.10 in which da = dz, a ∈ A := {0, e1, . . . , eda} and Ga = I without temporal

dependencies: For all i ∈ [dz], p(zi | a) = N (z;µiai, 1 + δiai) where µi ∈ R and δi > −1. We

consider the cases where ∀i, δi = 0 (unchanged variances) and ∀i, δi ̸= 0 (variances change).

If ∀i, δi = 0, we can represent p(zi | a) in its exponential form with a one-dimensional

sufficient statistic given by si(zi) = zi and natural parameter given by λi(a) = µiai. It can be

easily seen that if ∀i, µi ̸= 0 (i.e. the mean changes after the intervention), then the sufficient

variability assumption of Theorem 5.4 holds since the vectors λ(ei)− λ(0) = µiei do span Rdz .

If ∀i, δi ̸= 0, we can represent p(zi | a) in its exponential form with a two-dimensional sufficient

statistics given by si(zi) = (zi, z
2
i ) and natural parameter given by λi(a) =

(
µiai

1+δiai
, −1

2(1+δiai)

)
.

Note that, because we only have dz interventions, for any choice of a(0) ∈ A, the vectors {λ(a)−
λ(a(0))}a∈A can span at most a dz-dimensional subspace, which is insufficient variability according

to Theorem 5.4 since it requires spanning R2dz .

5.4.3. Partial disentanglement via sparse time dependencies in exponential
families

We now provide a (partial) disentanglement guarantee which leverages sparsity regularization
of Ĝz and is specialized for exponential families with a one-dimensional sufficient statistic (k = 1).
We will see that this extra parametric assumption on the transition model allows us to weaken the
sufficient influence assumption of Theorem 5.3 (Assumption 5.8). In particular, this is going to allow
for Markovian transitions without auxiliary variables, which was not allowed by the nonparametric
result (Remark 5.7).
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The sufficient influence of z assumption specialized to exponential families with k = 1 is
directly taken from Lachapelle et al. [2022]:

Assumption 5.11 (Sufficient influence of z [Lachapelle et al., 2022]). Assume k = 1 and Ds(z)
is invertible everywhere. There exist {(z(r),a(r), τ(r))}||Gz ||0

r=1 belonging to their respective support

such that

span
{
D

τ(r)
z λ(z(r),a(r))Ds(z

τ(r)
(r) )−1

}||Gz ||0

r=1
= Rdz×dz

Gz ,

where D
τ(r)
z λ and Ds are Jacobians with respect to zτ(r) and z, respectively.

In Appendix B.4, we show that the above assumption is implied by its nonparametric version
(Assumption 5.8) when the transition model is in an exponential family with k = 1. However,
Assumption 5.11 is strictly weaker than its nonparametric counterpart, Assumption 5.8. The reason
is that, in the former, zτ(r) can vary for different p whereas this is not allowed in the latter since we
require z = zτ(r) for all r.

The following theorem, extended from Lachapelle et al. [2022], shows that making stronger
parametric assumptions on the transition model allows to weaken the sufficient influence assumption.
Note that its structure is nearly identical to Theorem 5.3. Its proof can be found in Appendix B.3.

Theorem 5.5 (Disentanglement via sparse temporal dependencies in exponential families). Let

θ := (f ,λ,G) and θ̂ := (f̂ , λ̂, Ĝ) be two models satisfying Assumptions 5.1, 5.2, 5.3, 5.4, 5.9 as

well as all assumptions of Theorem 5.4. Further suppose that

(1) The sufficient statistic s is dz-dimensional (k = 1) and is a diffeomorphism from Rdz to

s(Rdz);
(2) [Sufficient influence of z] The Jacobian of the ground-truth transition function λ with

respect to z varies “sufficiently”, as formalized in Assumption 5.11;

Then, there exists a permutation matrix P such that PGzP⊤ ⊆ Ĝz. Further assume that

(3) [Sparsity regularization] ||Ĝz||0 ≤ ||Gz||0;

Then, θ ∼zcon θ̂ (Def. 5.14) & θ ∼lin θ̂ (Def. 5.17), which together implies that

v(z) = s−1(CP⊤s(z) + b) ,

where b ∈ Rdz and C ∈ Rdz×dz is invertible,Gz- and (Gz)⊤-preserving (Definition 5.11).

The reason we can simplify the sufficient influence assumption in the exponential family case
has to do with the quasi-linear form of v. Indeed, in that case, one can compute that the Jacobian of
v takes a special form: Dv(z) = Ds(v(z))−1LDs(z). Since Ds is diagonal everywhere, one can
see that the “non-diagonal part” of Dv(z), i.e. L, does not depend on z, which simplifies the proof.
See Appendix B.3 for details.

In Appendix D.2, we discuss how Khemakhem et al. [2020a] & Yao et al. [2022b] obtain
disentanglement guarantee and how their assumptions differ from ours.
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Example 5.15 (Markovian sparse temporal dependencies without auxiliary variables). Recall

Remark 5.7 which pointed out that, without auxiliary variables, non-Markovianity was necessary

to satisfy the nonparametric Assumption 5.8. We now illustrate that the analogous assumption

specialized for exponential families with k = 1 (Assumption 5.11) is not as restrictive, i.e. it allows

for Markovianity even when there are no auxiliary variables.

We start from Example 5.6 which was based on the situation depicted in Figures 5.1 & 5.3e

where the temporal graph Gz is lower triangular. Assume that no action is observed, i.e. we

can only leverage the sparsity of Gz to disentangle. We now provide a concrete Markovian

transition model p(zt | zt−1) that satisfies Assumption 5.11. Similarly to previous examples, assume

p(zt | zt−1) = N (zt;µ(zt−1), σ2I) where

µ(z) := z +

z
2
1/2
z3

1/3
z4

1/4

+

 0
z2

2/2
z3

2/3

+

 0
0
z2

3/2

 . (5.65)

Because the variance σ2 is not influenced by zt−1, we can represent this transition model in an

exponential family with k = 1 where the natural parameter is given by

λ(zt−1) = µ(zt−1)/σ (5.66)

and the sufficient statistic is given by s(z) = z/σ. We can thus compute

Dλ(z)Ds(z)−1 = I +

z1 0 0
z2

1 z2 0
z3

1 z2
2 z3

 (5.67)

which spans the 6-dimensional space R3×3
Gz , as showed in Example 5.13.

Connecting with the sufficient influence assumption of a in Lachapelle et al. [2022]. The previous
work of Lachapelle et al. [2022] could also leverage sparse influence of a to disentangle and was
based on exponential family and sufficient influence assumptions. In Appendix B.4, Proposition 5.12
shows that their sufficient influence of a assumption is actually equivalent to our nonparametric
version (Assumption 5.7) in the exponential family case with k = 1. An important conclusion
of this observation is that the identifiability result via sparse Ga from Lachapelle et al. [2022],
which was limited to the exponential family case with k = 1, can be derived from the more general
nonparametric result of Theorem 5.2 we introduced earlier.

5.5. Model estimation with sparsity constraint
The identifiability results presented in this work are based on two crucial postulates: (i) the

distribution over observations of both the learned and ground-truth models must match, i.e. θ̂ ∼obs θ

(Definition 5.4), and (ii) the learned graphs Ĝa and Ĝz must be as sparse as their ground-truth
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counterparts, respectively Ga and Gz. The theory suggests that, in order to learn a (partially)
disentangled representation, one should learn a model that satisfies these two requirements. In this
section, we present one particular practical approach to achieve this approximately. Appendix C.2
provides further details.
Data fitting. The first condition can be achieved by fitting a model to data. Since the models discuss
in this work present latent variable models, a natural idea is to use a maximum likelihood approach
based on the well-known framework of variational autoencoders (VAEs) [Kingma and Welling,
2014] in which the decoder neural network corresponds to the mixing function f̂ . We consider an
approximate posterior of the form

q(z≤T | x≤T ,a<T ) :=
T∏

t=1

q(zt | xt) , (5.68)

where q(zt | xt) is a Gaussian distribution with mean and diagonal covariance outputted by a
neural network encoder(xt). In our experiments, the latent model p̂(zt

i | z<t,a<t) is a Gaussian
distribution with mean µ̂i(z<t,a<t) parameterized as a fully connected neural network that “looks"
only at a fixed window of s lagged latent variables.5 Furthermore, the variances are learned but does
not depend on (z<t,a<t) (see Appendix C.2 for details). This variational inference model induces
the following evidence lower bound (ELBO) on log p̂(x≤T |a<T ):

log p̂(x≤T |a<T ) ≥ ELBO(f̂ , µ̂, Ĝ, q;x≤T ,a<T ) :=
T∑

t=1
E

q(zt|xt)
[log p̂(xt | zt)]− E

q(z<t|x<t)
KL(q(zt | xt)||p̂(zt | z<t,a<t)) . (5.69)

We derive this fact in Appendix D.3. This lower bound can then be maximized using some variant
of stochastic gradient ascent such as Adam [Kingma and Ba, 2015]. We note that many works have
proposed learning dynamical models with latent variables using VAEs [Girin et al., 2020], with
various choice of architectures and approximate posteriors. Our specific choices were made out of a
desire for simplicity, but the reader should be aware of other possibilities.

The learned distribution will exactly match the ground truth distribution if (i) the model has
enough capacity to express the ground-truth generative process, (ii) the approximate posterior has
enough capacity to express the ground-truth posterior p(zt|x≤T ,a<T ), (iii) the dataset is sufficiently
large and (iv) the optimization finds the global optimum. If, in addition, the ground truth generative
process satisfies the assumptions of Proposition 5.2, we can guarantee that the learned model θ̂ will
be equivalent to the ground truth model θ up to diffeomorphism (Definition 5.5).
Learning Ĝ with sparsity constraints. To go from equivalence up to diffeomorphism to actual
disentanglement (partial or not), Theorems 5.1, 5.2, 5.3 & 5.5 suggest we should not only fit the

5The theory we developed would allow for a µ function that depends on all previous time steps, not only the s previous
ones. This could be achieved with a recurrent neural network or transformer, but we leave this to future work.
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data, but also choose the learned graph Ĝ such that ||Ĝa||0 ≤ ||Ga||0 and/or ||Ĝz||0 ≤ ||Gz||0. In
order to allow for gradient-based optimization, our strategy consists in treating each edge Ĝi,j as
independent Bernoulli random variable with probability of success σ(γi,j), where σ is the sigmoid
function and γi,j is a parameter learned using the Gumbel-Softmax trick [Jang et al., 2017, Maddison
et al., 2017]. Let ELBO(f̂ , µ̂, Ĝ, q) be the ELBO objective of (5.69) averaged over the whole
dataset. We tackle the following constrained optimization problem:

max
f̂ ,µ̂,γ,q

EĜ∼σ(γ)ELBO(f̂ , µ̂, Ĝ, q) subject to EĜ∼σ(γ)||Ĝ||0 ≤ β . (5.70)

where β is an hyperparameter (which should be set ideally to β∗ := ||G||0, i.e. the number of edges
in the ground-truth graph) and Ĝ ∼ σ(γ) means that Ĝi,j are independent and distributed according
to σ(γi,j). Because EĜ∼σ(γ)||Ĝ||0 = ||σ(γ)||1 where σ(γ) is matrix, the constraint becomes
||σ(γ)||1 ≤ β. To solve this problem, we perform gradient descent-ascent on the Lagrangian
function given by

EĜ∼σ(γ)ELBO(f̂ , µ̂, Ĝ, q)− α(||σ(γ)||1 − β) (5.71)

where the ascent step is performed w.r.t. f̂ , µ̂, Ĝ and q; and the descent step is performed w.r.t.
Lagrangian multiplier α, which is forced to remain greater or equal to zero via a simple projection
step. As suggested by Gallego-Posada et al. [2021], we perform dual restarts which simply means
that, as soon as the constraint is satisfied, the Lagrangian multiplier is reset to 0. We used the library
Cooper [Gallego-Posada and Ramirez, 2022], which implements many constrained optimization
procedure in Python, including the one described above. Note that we use Adam [Kingma and Ba,
2015] for the ascent steps and standard gradient descent for the descent step on the Lagrangian
multiplier α.

We also found empircally that the following schedule for β is helpful: We start training with
β = maxĜ ||Ĝ||0 and linearly decreasing its value until the desired number of edges is reached.
This avoid getting a sparse graph too quickly while training, thus letting enough time to the model
parameters to learn. In each experiment, we trained for 300K iterations, and the β takes 150K to
go from its initial value to its desired value. We discuss how to select the hyperparameter β in
Section 5.8.

5.6. Evaluation with Rcon and SHD
In this section, we tackle the problem of evaluating quantitatively whether a learned representa-

tion ẑ is completely or partially disentangled w.r.t. the ground-truth representation z, given a dataset
of paired representations {(zi, ẑi)}i∈[N ]. More precisely, want to evaluate whether two models are
a-consistent or z-consistent (Definitions 5.13 & 5.14). To achieve this, we have to evaluate whether
there exists a graph preserving map c (Definition 5.12) and a permutation matrix P such that for all
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i ∈ [N ], zi = c(P⊤ẑi). For evaluation purposes, we assume we observe the ground-truth latent
representation for each observation, i.e. we have {(xi, zi)}i∈N sampled i.i.d. from the ground-truth
data generating process. We will take ẑi := encoder(xi) where encoder is from the learned
VAE model introduced in Section 5.5. For simplicity, we assume that c is affine.6

We start with how to evaluate complete disentanglement. A popular choice for this is the mean

correlation coefficient (MCC), which is obtained by first computing the Pearson correlation matrix
K ∈ Rdz×dz between the ground-truth representation and the learned representation (Ki,j is the
correlation between zi and ẑj). Then MCC := maxP∈permutations

1
dz

∑dz

i=1 |(KP )i,i|. We denote by
P̂ the optimal permutation found by MCC.

To evaluate whether the learned representation is identified up to linear transformation (Defini-
tion 5.17), we perform linear regression to predict the ground-truth latent factors from the learned
ones, and report the mean of the Pearson correlations between the predicted ground-truth latents and
the actual ones. This metric is sometimes called the coefficient of multiple correlation, and happens
to be the square root of the better known coefficient of determination, usually denoted by R2. The
advantage of using R instead of R2 is that the former is comparable to MCC, and we always have
MCC ≤ R. Let us denote by L̂ the matrix of estimated coefficients, which should be thought of as
an estimation of L in Definition 5.17 (assuming s(z) = z, as is the case with Gaussian latents with
fixed variance). Note that L̂ was fitted on standardized z and ẑ (shifted and scaled to have mean 0
and 1). This yields coefficients L̂i,j that are directly comparable without changing the value of the
R score. We visualize L̂ in Figures 5.6 & 5.8.

To evaluate whether the learned representation is a-consistent or z-consistent to the ground-
truth (Definitions 5.13 & 5.14), as predicted by Theorems 5.1 & 5.3, we introduce a novel metric,
denoted by Rcon. The idea behind Rcon is to predict the ground-truth factors z from only the
inferred factors ẑ that are allowed by the equivalence relations. For instance, for a-consistency
(Definition 5.13), the relation between z and ẑ is given by z = c(P⊤ẑ) where c is aGa-preserving
diffeomorphism. Since we assume for simplicity that c is affine, we have z = CP⊤ẑ + b whereC
is a Ga-preserving matrix. The idea is then to estimate both P and C using samples (z, ẑ). The
permutationP is estimated by P̂ , which was found when computing MCC (Section 5.8). To estimate
C, we compute ẑperm := P̂⊤ẑ and then compute the mask M ∈ {0, 1}dz×dz specifying which
entries ofC are allowed to be nonzero, as required by theGa-preservation property (Proposition 5.3).
Then, for every i, we predict the ground-truth zi by performing linear regression only on the allowed

factors, i.e. Mi,· ⊙ ẑperm, and compute the associated coefficient of multiple correlations Rcon,i

and report the mean, i.e. Rcon := 1
dz

∑dz

i=1 Rcon,i. It is easy to see that we must have Rcon ≤ R,
since Rcon was computed with less features than R. Moreover, MCC ≤ Rcon, because MCC can be

6This is not a simplification when the latent factors in the model and in the data-generating process are Gaussian with
fixed variance and the assumptions of Theorem 5.4 hold. That is because the latent model is in the exponential family
with sufficient statistic s(z) = z and, by Theorem 5.4, we must have that z = s−1(Ls(ẑ) + b) = Lẑ + b.
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thought of as computing exactly the same thing as for Rcon, but by predicting zi only from ẑperm,i,
i.e. with less features than Rcon. This means we always have 0 ≤ MCC ≤ Rcon ≤ R ≤ 1. This is a
nice property which allows to compare all three metrics together and reflects the hierarchy between
equivalence relations. Note that Rcon depends implicitly on the ground-truth graph, since the matrix
M indicating which entries of C are forced to be zero by the equivalence relation depends onG.

To compare the learned graph Ĝ to the ground-truthG, we report the (normalized) structural

Hamming distance (SHD) between the ground-truth graph and the estimated graph permuted by P̂ .
More precisely, we report SHD = (||Ga − P̂⊤Ĝa||0 + ||Gz − P̂⊤ĜzP̂ ||0)/(dadz + d2

z), where P̂
is the permutation found by MCC and (dadz + d2

z) is the maximal number of edgesG can have.

5.7. Related work
Linear and nonlinear ICA. The first results showing latent variables can be identified up to
permutation and rescaling at least date back to classical linear ICA which assumes a linear mixing
function f and mutually independent and non-Gaussian latent variables [Jutten and Herault, 1991,
Tong et al., 1993, Comon, 1994]. Hyvärinen and Pajunen [1999] showed that when allowing f to be
a general nonlinear transformation, a setting known as nonlinear ICA, mutual independence and non-
Gaussianity alone are insufficient to identify the latent variables. This inspired multiple variations
of nonlinear ICA that enabled identifiability by leveraging, e.g., nonstationarity [Hyvarinen and
Morioka, 2016] and temporal dependencies [Hyvarinen and Morioka, 2017]. Hyvärinen et al. [2019]
generalized these works by introducing a data generating process in which the latent variables are
conditionally mutually independent given an observed auxiliary variable (corresponding to a in our
work). These last three works rely on some form of noise contrastive estimation (NCE) [Gutmann
and Hyvärinen, 2012], but similar identifiability results have also been shown for VAEs [Khemakhem
et al., 2020a, Locatello et al., 2020a, Klindt et al., 2021], normalizing flows [Sorrenson et al., 2020]
and energy-based models [Khemakhem et al., 2020b]. Kivva et al. [2022] showed that it is not
necessary to observe the auxiliary variable to obtain disentanglement when the mixing function is
piecewise affine and the latent factors are distributed according to a mixture of Gaussians with a
diagonal covariance.
Causal representation learning (static). Since the publication of the first iteration of this work at
CLeaR 2022, the field now known as causal representation learning (CRL) [Schölkopf et al., 2021]
gained significant traction. The prototypical problem of CRL is similar to nonlinear ICA in that the
goal is to identify latent factors of variations, but differs in that the latent variables are assumed to be
related via a causal graphical model (CGM) and interventions on the latents are typically observed.
While a few works assumed the causal graph structure is known [Kocaoglu et al., 2018, Shen
et al., 2022, Nair et al., 2019, Liang et al., 2023], significant progress has been achieved recently
in the setting where the latent causal graph is unknown and must be inferred from single-node

188



interventions targeting the latent variables [Ahuja et al., 2023, Squires et al., 2023, Buchholz et al.,
2023, von Kügelgen et al., 2023, Zhang et al., 2023, Jiang and Aragam, 2023, Varici et al., 2023b,a].
In a similar spirit, Liu et al. [2023], Yang et al. [2021] leverage a form of nonstationarity that does
not necessarily correspond to interventions and Bengio et al. [2020] suggests using adaptation
speed as a heuristic objective to disentangle latent factors in the bivariate case, although without
identifiability guarantees. The above works do not support temporal dependencies, unlike the
framework presented in this work. While we do focus on temporal dependencies, the special
case where T = 1 fleshed out in Examples 5.9, 5.10 & 5.12 can be categorized as static CRL
with independent latent factors, i.e. empty latent causal graph. This approach has been applied
to single-cell data with gene perturbations [Lopez et al., 2023, Bereket and Karaletsos, 2023].
Importantly, Example 5.12 illustrates how multi-node interventions on the latent factors can yield
(partial) disentanglement in the independent factors regime. To the best of our knowledge, this
constitutes the first identifiability guarantee from multi-node interventions with nonlinear mixing
and should form an important step towards generalizing to arbitrary latent graphs. Note that Bing
et al. [2023] recently proposed a disentanglement guarantee from multi-node interventions in the
linear mixing setting.

CRL is closely related to methods that assume access to paired observations (x,x′) that are
generated from a common decoder f . These are in contrast with the works discussed above which
assume the samples from observational and interventional distributions are unpaired. In the paired

data regime, Locatello et al. [2020a] and Ahuja et al. [2022b] assume that only a small set of latent
factors S ⊆ [dz] changes between x and x′. Interestingly, Locatello et al. [2020a] assume that, for
all i, P (S ∩S ′ = {i}) > 0 (for i.i.d S and S ′), which resembles our graphical criterion for complete
disentanglement (Definition 5.5). Karaletsos et al. [2016] proposed a related strategy based on
triplets of observations and weak labels indicating which observation is closer to the reference in
the (masked) latent space. Von Kügelgen et al. [2021] modelled the self-supervised setting with
data augmentation using a similar idea and showed block-identifiability of the latent variables
shared among x and x′. Brehmer et al. [2022] assumes that the latent variables are sampled from a
structural causal model (SCM) [Peters et al., 2017] and that x′ is counterfactual in the sense that it
is generated using the same SCM and exogenous noise values as x except for some noises which are
modified randomly. Similar approaches can also provide identifiability guarantees in the multi-view

setting where the decoders for the different views x and x′ are allowed to be different [Gresele
et al., 2020, Daunhawer et al., 2023]. The paired observations setting bears some similarity with
the temporal setting covered in this work since the pairs (xt,xt−1) are observed jointly. However
contrarily to the above works, Theorems 5.3 & 5.5 allow all latent variables to change between t− 1
and t, only the temporal dependencies between them are assumed sparse. Morioka and Hyvarinen
[2023] can also be seen as paired CRL in which the latents of different views can interact causally
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in an restricted manner. Recently, Yao et al. [2023] generalized previous work by allowing more
than two views.
Leveraging temporal dependencies or non-stationarity. Tong et al. [1990] proved identifiability
of linear ICA when the latent factor zt

i are correlated across time steps t but remain independent
across components i, an idea that has been extended to nonlinear mixing [Hyvarinen and Morioka,
2017, Klindt et al., 2021, Schell and Oberhauser, 2023]. Using our notation, these works assume a
diagonal adjacency matrixGz which contrasts with Theorems 5.3 & 5.5 which allow for general
Gz (although some graphs might not yield complete disentanglement). Yao et al. [2022a, Theorem
1] also allows for generalGz, but do not rely on sparsity ofGz nor sparse interventions on the latent
factors for identification. Instead, it relies on conditional independence of zt

i given zt−1 and on
a “sufficient variability” condition involving the third cross-derivatives ∂3

(∂zt
i )2∂zt−1

j

log p(zt
i | zt−1)

which excludes simple Gaussian models with homoscedastic variance like the ones we considered
in Examples 5.8, 5.9, 5.11 and in our experiments of Section 5.8. General non-stationarity of the
latent distribution, i.e. that are not sparse like the type of non-stationarity considered in this work,
can also be used to identify the latent factors [Hyvarinen and Morioka, 2016, Hyvärinen et al., 2019,
Khemakhem et al., 2020a, Hälvä and Hyvärinen, 2020, Morioka et al., 2021, Yao et al., 2022b,a],
but these results require sufficient variability of higher-order derivatives/differences of the log-
densities, which again typically exclude simple homoscedastic Gaussian models (see Appendix D.2
for more). Ahuja et al. [2022a] characterized the indeterminacies of the representation in dynamical
latent models to be the set of equivariances of the transition mechanism. Apart from temporal
dependencies, one can also consider latent factors structured according to a spatial topology [Hälvä
et al., 2021].
Dynamical causal representation learning: The previous iteration of this work [Lachapelle et al.,
2022] concurrently with Lippe et al. [2022] introduced latent variables identifiability guarantees
for dynamical latent models based on sparse interventions. Lippe et al. [2023b] later proposed a
generalization in which instantaneous causal connections are allowed. Key differences with the
present work are (i) Lippe et al. [2023b] considers interventions with known targets while the
present work (as well as Lachapelle et al. [2022]) consider interventions with unknown targets;
(ii) Lachapelle et al. [2022, Theorem 5] and Theorems 5.3 & 5.5 do not need interventions to
disentangle since they leverage sparsity of the temporal dependencies, contrarily to Lippe et al.
[2023b]; (iii) Lippe et al. [2023b] allows for instantaneous causal connections, unlike the present
work; and (iv) Lippe et al. [2023b] demonstrates their approach on image data. The concurrent work
of Volodin [2021] independently proposed a very similar approach which also learns a sparse latent
causal graph relating them together and to actions using binary masks, but focuses on testing various
algorithmic variants and verifies empirically that the approach works on interactive environments
rather than on formal identifiability guarantees. Lopez et al. [2023], Lei et al. [2023] found that
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such models adapt to sparse interventions more quickly than their entangled counterparts. Keurti
et al. [2023] discusses disentanglement in the temporal regimes through the lens of group theory but
does not provide identifiability guarantees. Recently, Lippe et al. [2023a] proposed a model similar
to ours with disentanglement guarantees based on the constraint that the effect of the variable at−1

(analogous to R in their work) on each zt
i is mediated by a deterministic binary variable.

Constraining the decoder function f . It is worth noting that one can also obtain disentanglement
guarantees by constraining the decoder function f in some way [Taleb and Jutten, 1999, Gresele
et al., 2021, Buchholz et al., 2022, Leemann et al., 2023, Lachapelle et al., 2023b, Horan et al.,
2021b]. In particular, this can be achieved by enforcing some form of sparsity on f [Moran et al.,
2022, Zheng et al., 2022, Brady et al., 2023, Xi and Bloem-Reddy, 2023]. In contrast, the present
work assumes only that f is a general diffeomorphism onto its image. Note that Zheng et al. [2022]
reused many proof strategies of the shorter version of this work [Lachapelle et al., 2022].
Disentanglement with explicit supervision. Some works leverage more explicit supervision to
disentangle. For example, Ahuja et al. [2022c] assumes labels are given by a linear transformation
of mutually independent and non-Gaussian latent factors. Instead of relying on independence,
Lachapelle et al. [2023a], Fumero et al. [2023] leverage the sparsity of the linear map to disentangle.
Other relevant works on sparsity. The assumption that high-level variables are sparsely related to
one another and/or to actions was discussed by Bengio [2019], Goyal and Bengio [2021], Ke et al.
[2021]. These ideas have been leveraged also by Goyal et al. [2021b,a], Madan et al. [2021] via
attention mechanisms. Although these works are, in part, motivated by the same core assumption
as ours, their focus is more on empirically verifying out-of-distribution generalization than it is on
disentanglement (Definition 5.7) and formal identifiability results. The assumption that individual
actions often affect only one factor of variation has been leveraged for disentanglement by Thomas
et al. [2017]. Loosely speaking, the theory we developed in the present work can be seen as a formal
justification for such approaches.

5.8. Experiments
To illustrate our identifiability results and the benefit of mechanism sparsity regularization

for disentanglement, we apply the sparsity regularized VAE method of Section 5.5 on various
synthetic datasets. Section 5.8.1 focuses on graphs satisfying the criterion of Assumption 5.5
which, as we saw, guarantees complete disentanglement. We also verify experimentally that the
sufficient influence assumptions are indeed important for disentanglement and explore latent model
with both homoscedastic and heteroscedastic variance. Section 5.8.2 explores graphs that do not
satisfy the criterion. Details about our implementation are provided in Appendix C.2 and the code
used to run these experiments can be found here: https://github.com/slachapelle/
disentanglement_via_mechanism_sparsity.
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Synthetic datasets. The datasets we considered are separated in two groups: Action & Time datasets.
The former group has only auxiliary variables, which we interpret as actions, without temporal
dependence, we thus fix Ĝz = 0. The latter group has only temporal dependence without actions,
we thus fix Ĝa = 0. In each dataset, the ground-truth mixing function f is a randomly initialized
neural network. The dimensionality of z and x are dz = 10 and dx = 20, respectively. In the action
datasets, the dimensionality of a is da = 10, unless specified otherwise. The ground-truth transition
model p(zt | z<t,a<t) is always a Gaussian with a mean outputted by some functionµG(zt−1, at−1)
(the data is Markovian). For all datasets considered the covariance matrix is given by σ2

zI , i.e.
the variance if homoscedastic, except for the datasets ActionNonDiagk=2 and TimeNonDiagk=2

which have heteroscedastic variance. Appendix C.1 provides a more detailed descriptions of the
datasets including the explicit form of µ andG in each case. Note that the learned transition model
p̂(zt | zt−1,at−1) is also an homoscedastic Gaussian where the mean function µ̂ is an MLP.
Baselines. On the action datasets, we compare with TCVAE [Chen et al., 2018], iVAE [Khemakhem
et al., 2020a]. Only iVAE leverages the action. On the temporal datasets, we compare our approach
with TCVAE, PCL [Hyvarinen and Morioka, 2017] and SlowVAE [Klindt et al., 2021]. Only PCL
and SlowVAE leverages the temporal dependencies. We also report the performance of a randomly
initialized encoder (Random) and one trained via least-square regression directly on the ground-truth
latent factors (Supervised). See Appendix C.3 for details on the baselines.
Unsupervised hyperparameter selection. In practice, the hyperparameters cannot be selected so as
to optimize MCC, since this metric requires access to the ground-truth latent factors. Duan et al.
[2020] introduced unsupervised disentanglement ranking (UDR) as a solution to unsupervised
hyperparameter selection for disentanglement. Figures 5.5 & 5.7 shows the performance of all
approaches using UDR to select the hyperparameter (when it has one). For our approach, we show a
range of sparsity bounds β and indicate the hyperparameter selected by UDR with a black star. Note
that, for our approach, we excluded from the UDR selection hyperparameters that yielded graphs
with fewer edges than latent factors, as a heuristic to prevent UDR from selecting overly sparse
graphs. Figures 5.5 & 5.7 show this unsupervised procedure selects a reasonable regularization level
(as indicated by the black star), although not always the optimal one. See Appendix C.4 for details.

5.8.1. Graphs allowing complete disentanglement (satisfying Assumption 5.5)

Satisfying sufficient influence assumptions. Figure 5.5 reports the MCC and R scores of all methods
on four datasets that satisfy both the graphical criterion and the sufficient influence assumption:
the datasets ActionDiag and TimeDiag have “diagonal” graphs, i.e. Ga = I and Ga = I ,
while ActionNonDiag and TimeNonDiag present more involved graphs (depicted in Figure 5.6).
Observations: We see that the sparsity constraint improves MCC and SHD on all datasets. Although
most baselines obtain goodR scores, which indicates their representation encodes all the information
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Figure 5.5. Graphical criterion holds: Datasets ActionDiag and TimeDiag have diagonal graphs
while ActionNonDiag and TimeNonDiag have non-diagonal graphs. Sufficient influence is always
satisfied. For our regularized VAE approach, we report performance for multiple sparsity levels
β. In the left column, only Ĝa is learned while in the right column, only Ĝz is learned. For more
details on the synthetic datasets, see Appendix C.1. The black star indicates which regularization
parameter is selected by the filtered UDR procedure (see Appendix C.4). For R and MCC, higher is
better. For SHD, lower is better. Performance is reported on 5 random seeds.

about the factors of variations, they obtain poor MCC in comparison to our approach with a properly
selected sparsity level, which indicates they fail to disentangle. Moreover, the sparsity level selected
by UDR (indicated by a black star) corresponds to the lowest SHD value for three out of four
datasets and when it does not, it is still better than no sparsity at all. Figure 5.6 shows examples of
estimated graphs. More details can be found in the caption.
Violating sufficient influence assumptions. The left column of Table 5.3 reports performance of all
methods on the ActionNonDiagNoSuffInf and TimeNonDiagNoSuffInf datasets, which are essentially the
same as ActionNonDiag and TimeNonDiag but do not satisfy the sufficient influence assumptions
(see Appendix C.1 for details). Observations: For the ActionNonDiagNoSuffInf dataset, we still
see an improvement in MCC and SHD when regularizing for sparsity, but not as important as
for ActionNonDiag, which got MCC ≈ 1 and SHD ≈ 0. Still, our approach outperforms the
baselines. For the TimeNonDiagNoSuffInf dataset, there is simply no improvement in MCC from
sparsity regularization. In that case, SlowVAE (with hyperparameter selected to maximize MCC)
and PCL have higher MCC. These observations confirm the importance of the sufficient influence
assumptions.
Heteroscedastic variance (k = 2). The right column of Table 5.3 reports performance of all methods
on the ActionNonDiagk=2 and TimeNonDiagk=2 datasets, which are essentially the same as Action-
NonDiag and TimeNonDiag but presents heteroscedastic variance, i.e. var(zt | zt−1,at−1) is not a
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(a) ActionNonDiag dataset, β = 20 (b) TimeNonDiag dataset, β = 50

Figure 5.6. For each dataset, we visualize the median SHD run among the five randomly initialized
runs of Figure 5.5 with the sparsity level β that is the closest to the ground-truth sparsity level ||G||0.
For each dataset, we visualize (i) the ground-truth graph, (ii) the permuted estimated graph, (iii) the
entanglement graph predicted by our theory, and (iv) the permuted matrix of regression coefficients
in absolute value normalized by the maximum coefficient i.e. |L̂P̂ |/maxi,j |L̂i,j|. In Figure 5.6a,
the estimated graph is exactly the ground-truth and |L̂P̂ | is perfectly diagonal, indicating complete
disentanglement. In Figure 5.6b, the learned graph is close but not equal to the ground-truth. We
can see that the off-diagonal nonzero values in |L̂P̂ | align with the poorly estimated parts of the
graph.

constant function of (zt−1,at−1). This setting is interesting since it is not covered by the exponential
family theory of Lachapelle et al. [2022] which assumed a one-dimensional sufficient statistic s
(k = 1) whereas here we have k = 2. Both datasets fall under the umbrella of our nonparametric
theory. However, TimeNonDiagk=2 cannot satisfy the sufficient influence assumption because the
data is Markovian and does not present an auxiliary variable (see Remark 5.7). Observations: Both
datasets benefit from sparsity and outperform the baselines. On ActionNonDiagk=2 we obtain near
perfect MCC and SHD while on TimeNonDiagk=2 we obtain performance similar to TimeNonDiag.
We hypothesize that the performance bottleneck in both TimeNonDiag and TimeNonDiagk=2 is
graph estimation, as in both cases SHD is always greater than ≈ 20%.

5.8.2. Graphs allowing only partial disentanglement (not satisfying Assump-
tion 5.5)

In this section, we explore datasets with graphs that do not satisfy the criterion of Assumption 5.5.
This means our theory can only guarantee a form a partial disentanglement. For this reason, we will
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Datasets ActionNonDiagNoSuffInf ActionNonDiagk=2

Metrics SHD MCC R SHD MCC R

iVAE – .61±.02 .97±.00 – .59±.03 .94±.00

TCVAE (UDR) – .58±.03 .88±.01 – .55±.02 .96±.00

TCVAE (MCC) – .61±.02 .96±.00 – .55±.02 .96±.00

Ours (no sparsity) .80±.00 .62±.02 .93±.00 .80±.00 .70±.03 .97±.00

Ours (sparsity) .13±.03 .86±.04 1.0±.00 .03±.01 .98±.02 1.0±.00

Random – .37±.02 .63±.02 – .37±.02 .60±.02

Supervised – 1.0±.00 1.0±.00 – 1.0±.00 1.0±.00

Datasets TimeNonDiagNoSuffInf TimeNonDiagk=2

Metrics SHD MCC R SHD MCC R

PCL – .66±.04 .96±.00 – .58±.04 .83±.01

SlowVAE (UDR) – .59±.02 .98±.00 – .57±.01 .93±.00

SlowVAE (MCC) – .71±.02 .98±.00 – .58±.02 .95±.00

TCVAE (UDR) – .58±.03 .98±.00 – .57±.01 .96±.00

TCVAE (MCC) – .58±.03 .98±.00 – .57±.01 .96±.00

Ours (no sparsity) .45±.00 .62±.04 .98±.00 .45±.00 .62±.01 .98±.00

Ours (sparsity) .32±.05 .63±.03 .99±.00 .20±.07 .74±.04 .98±.00

Random – .40±.04 .67±.02 – .36±.01 .59±.02

Supervised – 1.0±.00 1.0±.00 – 1.0±.00 1.0±.00

Table 5.3. Datasets ActionNonDiagNoSuffInf and TimeNonDiagNoSuffInf do not satisfy their respective
sufficient influence assumptions (Assumptions 5.6 & 5.11). Datasets ActionNonDiagk=2 and
TimeNonDiagk=2 are such that var(zt | zt−1,at−1) depends on zt−1 or at−1 (which means the
sufficient statistic has dimension k = 2, contrarily to all other datasets). For our method, we show
performance both with and without the sparsity constraint. In the former case, the constraint is set
to the number of edges in the ground-truth graph. For baselines that have hyperparameters, we
report their performance with the hyperparameter configurations that maximize UDR and MCC.

report the Rcon metric introduced in Section 5.6 which measures whether two representations are
a-consistent (Definition 5.13) or z-consistent (Definition 5.14).
Satisfying sufficient influence assumptions. Figure 5.7 reports the MCC, Rcon and R scores of
all methods on four datasets that satisfy the sufficient influence assumption but not the graphical
criterion: the datasets ActionBlockDiag and TimeBlockDiag have “block diagonal” graphs, while
ActionBlockNonDiag and TimeBlockNonDiag have more intricate graphs (depicted in Figure 5.8).
See Appendix C.1 for details about the datasets. Observations: In all four datasets, some sparsity
level yields near perfect Rcon, indicating the learned models are approximately a-consistent or
z-consistent to the ground-truth. Morevover, SHD is correlated with Rcon. Without surprise,
MCC never comes close to one since complete disentanglement is not guaranteed by our theory.
Analogously to Figure 5.5, the baselines have decent R values but very low MCC and Rcon,
indicating they cannot achieve partial disentanglement. Figure 5.8 shows examples of estimated
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Figure 5.7. Graphical criterion does not hold: Datasets ActionBlockDiag and TimeBlockDiag
have block-diagonal graphs while ActionBlockNonDiag and TimeBlockNonDiag have non-diagonal
graphs. Sufficient influence is always satisfied. In the left column, only Ĝa is learned and we vary
βa, and in the right column, only Ĝz is learned and we vary βz. For more details on the synthetic
datasets, see Appendix C.1. The black star indicates which regularization parameter is selected by
the filtered UDR procedure (see Appendix C.4). For R and MCC, higher is better. For SHD, lower
is better. Performance is reported on 5 random seeds.

ActionRandomGraphs

Without sparsity With sparsity
p(edge) MCC Rcon R MCC Rcon R SHD E||V ||0

10% .58±.13 .61±.11 .68±.13 .69±.14 .70±.12 .70±.12 .00±.00 45.0
20% .67±.06 .69±.05 .83±.08 .85±.08 .86±.08 .86±.09 .01±.01 25.8
40% .67±.03 .70±.03 .93±.04 .94±.05 .95±.05 .98±.04 .06±.05 15.8
60% .69±.06 .73±.05 .96±.00 .88±.07 .91±.05 .99±.01 .14±.08 15.8
90% .63±.04 .81±.08 .97±.00 .60±.01 .78±.07 .97±.00 .21±.07 45.0

TimeRandomGraphs

Without sparsity With sparsity
p(edge) MCC Rcon R MCC Rcon R SHD E||V ||0

10% .66±.03 .66±.03 .98±.00 1.0±.00 1.0±.00 1.0±.00 .01±.02 10.2
20% .63±.05 .63±.05 .98±.00 .99±.01 .99±.01 .99±.00 .08±.09 10.2
40% .61±.02 .61±.02 .98±.00 .82±.16 .82±.16 .98±.01 .27±.13 10.2
60% .58±.02 .58±.02 .98±.00 .71±.12 .71±.12 .98±.00 .33±.06 10.4
90% .58±.03 .63±.08 .98±.00 .58±.02 .63±.08 .98±.00 .20±.07 26.1

Table 5.4. Experiments with randomly generated graphs. The probability of sampling an edge
is p(edge). We report an estimation of E||V ||0 which is the average number of edges in the
entanglement graph V entailed by the random ground-truth graphG.

graph. When it comes to hyperparameter selection, UDR selects the hyperparameter with the lowest
SHD on three out of four datasets, which indicates that UDR does reasonably well.
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(a) ActionBlockNonDiag dataset, β = 10 (b) TimeBlockNonDiag dataset, β = 30

Figure 5.8. For each dataset, we visualize the median SHD run among the five randomly initialized
runs of Figure 5.7 with the sparsity level β that is the closest to the ground-truth sparsity level ||G||0.
For each dataset, we visualize (i) the ground-truth graph, (ii) the permuted estimated graph, (iii) the
entanglement graph predicted by our theory, and (iv) the permuted matrix of regression coefficients
in absolute value normalized by the maximum coefficient i.e. |L̂P̂ |/maxi,j |L̂i,j|. For both datasets,
the learn graph is very close to the ground-truth. Furthermore, the match between the zero entries of
L̂P̂ and those of the theoretical entanglement graph C is very good, although not perfect. Notice
how certain blocks of latent factors remain entangled, as predicted by the theory.

Random graphs of varying sparsity levels. In Table 5.4, we consider the same µ functions as in
datasets ActionNonDiag and TimeNonDiag, but explore more diverse randomly generated ground-
truth graphs with various degrees of sparsity. Edges are sampled i.i.d. with some probability p(edge).
However note that, for TimeRandomGraphs dataset, the self-loops are presents with probability one.
We report the performance of our approach both with and without sparsity regularization. When
using sparsity, we set the β equal to the ground-truth number of edges ||G||0. Observations: First,
all datasets obtain an improvement in MCC andRcon from sparsity regularization, except for the very
dense graphs with p(edge) = 90%, in which case regularization does nothing or slightly degrades
performance. Secondly, we can see that the SHD tends to be higher for larger graphs, suggesting
these are harder to learn. Thirdly, in the ActionRandomGraphs datasets, we can see a negative
correlation between MCC and E||V ||0, which is expected since ||V ||0 close to 10 means complete
disentanglement is possible (assuming the graph is learned properly). This pattern also appears
to some extent in the TimeRandomGraphs datasets. Notice how, among the TimeRandomGraphs
datasets, all datasets sparser than p(edge) = 90% always have E||V ||0 ≈ 10, indicating complete
disentanglement should be possible.7 This is confirmed by very high MCC, at least for sparser
graphs which are learned properly. Finally, we note that the R score is low for the very sparse action
7We suspect this occurs because the self-loops which are present with probability one, unlike the Action dataset.
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datasets. We suspect this is because very sparse graphs are less likely to satisfy the assumption of
sufficient variability (Theorem 5.4) which guarantees quasi-linear equivalence (here it is actually
linear equivalence, because of Gaussianity). Indeed, for very sparse graphs, some latent factors
might end up without parents. This is not the case in the time datasets because of the self-loops
which are always presents.

5.9. Conclusion
This work proposed a novel principle for disentanglement based on mechanism sparsity regu-

larization. The idea is based on the assumption that the mechanisms that govern the dynamics of
high-level concepts are often sparse: actions usually affect only a few entities and objects usually
interact sparsely with each other. We provided novel nonparametric identifiability guarantees for
this setting which gives sufficient conditions for disentanglement, whether complete or partial.
Given the dependency structure between latent factors and auxiliary variables, our theory predicts
the entanglement graph describing which estimated latent factors are expected to remain entangled.
This constitutes a significant extension of the shorter version of this work [Lachapelle et al., 2022].
We further provide various examples to illustrates the consequences of our guarantees as well as
the assumptions it relies on. For instance, we show that multi-node interventions with unknown
targets fall under the umbrella of our framework. Finally, we demonstrate the theory experimentally
by training a sparsity-constrained variational autoencoder on synthetic data, which allows us to
explore various settings. Our work establishes a solid theoretical grounding for further empirical
investigations in more realistic scenarios, such as single-cell data with gene perturbations [Lopez
et al., 2023] and video [Lei et al., 2023]. Future works include relaxing assumptions such as
conditional independence or considering more permissive settings such as “contextual sparsity”,
i.e., the assumption that objects only interact with each other in particular situations. We believe the
latter could be formalized and leveraged for disentanglement using the tools developed in this work.
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Appendices of Chapter 5

A. Identifiability theory - Nonparametric case

A.1. Useful Lemmas

Definition 5.18 (Regular closed set). A set A ⊆ Rn is regular closed when it is equal to the closure

of its interior, i.e. A◦ = A.

Lemma 5.4. Let A ⊆ Rn and f : A → Rm be a Ck function. Then, its k first derivatives is

uniquely defined on A◦ in the sense that they do not depend on the specific choice of Ck extension.

Proof Let g : U → Rn and h : V → Rn be two Ck extensions of f to U ⊆ Rn and V ⊆ Rn both
open in Rn. By definition,

g(x) = f(x) = h(x), ∀x ∈ A . (5.72)

The usual derivative is uniquely defined on the interior of the domain, so that

Dg(x) = Df(x) = Dh(x), ∀x ∈ A◦ . (5.73)

Consider a point x0 ∈ A◦. By definition of closure, there exists a sequence {xk}∞
k=1 ⊆ A◦ s.t.

limk→∞ xk = x0. We thus have that

lim
k→∞

Dg(xk) = lim
k→∞

Dh(xk) (5.74)

Dg(x0) = Dh(x0) , (5.75)

where we used the fact that the derivatives of g and h are continuous to go to the second line. Thus,
all the Ck extensions of f must have equal derivatives on A◦. This means we can unambiguously
define the derivative of f everywhere on A◦ to be equal to the derivative of one of its Ck extensions.

Since f is Ck, its derivative Df is Ck−1, we can thus apply the same argument to get that the
second derivative of f is uniquely defined on A◦◦

. It can be shown that A◦◦ = A◦. One can thus
apply the same argument recursively to show that the first k derivatives of f are uniquely defined
on A◦.



Calligraphic & indexing conventions
[n] := {1, 2, . . . , n}
x Scalar (random or not, depending on context)
x Vector (random or not, depending on context)
X Matrix
X Set/Support
f Scalar-valued function
f Vector-valued function

Df , Df Jacobian of f and f
D2f Hessian of f

B ⊆ [n] Subset of indices
xB Vector formed with the ith coordinates of x, for all i ∈ B

XB,B′ Matrix formed with the entries (i, j) ∈ B ×B′ ofX .

Recurrent notation
xt ∈ Rdx Observation at time t

x≤t ∈ Rdx×t Matrix of observations at times 1, . . . , t
zt ∈ Rdz Vector of latent factors of variations at time t

z≤t ∈ Rdz×t Matrix of latent vectors at times 1, . . . , t
at ∈ Rda Vector of auxiliary variables at time t

a<t ∈ Rda×t Matrix of auxiliary vectors at times 0, 1 . . . , t− 1
A ⊆ Rda Support of at

f : Rdz → Rdx Ground-truth decoder function
f̂ : Rdz → Rdx Learned decoder function
p(zt | z<t,a<t) Ground-truth latent transition model
p̂(zt | z<t,a<t) Learned latent transition model
Ga ∈ {0, 1}dz×da Ground-truth adjacency matrix of graph connecting a<t to

zt

Gz ∈ {0, 1}dz×dz Ground-truth adjacency matrix of graph connecting z<t to
zt

Ĝa, Ĝz Learned adjacency matrices
Paa

i ⊆ [da] Parents of zt
i inGa

Cha
ℓ ⊆ [dz] Children of at

ℓ inGz

Paz
i ⊆ [dz] Parents of zt

i inGz

Chz
i ⊆ [dz] Children of zt−1

i inGz

Dt
z log p ∈ R1×dz Jacobian vector of log p(zt | z<t,a<t) w.r.t. zt

H t,τ
z,a log p ∈ Rdz×da Hessian matrix of log p(zt | z<t,a<t) w.r.t. zt and aτ

H t,τ
z,z log p ∈ Rdz×dz Hessian matrix of log p(zt | z<t,a<t) w.r.t. zt and zτ

σ : [dz]→ [dz] A permutation

Topology
X Closure of the set X ⊆ Rn

X ◦ Interior of the set X ⊆ Rn

Table 5.5. Table of Notations.
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Lemma 5.5. Let X be some set. A family of functions (fi : X → R)n
i=1 is linearly independent

if and only if there exists x1, ..., xn ∈ X such that the family of vectors ((f1(xi), ..., fn(xi)))n
i=1 is

linearly independent.

Proof We start by proving the “if” part. Assume the functions are linearly dependent. Then there
exists α ̸= 0 such that, for all x ∈ X ,

∑n
i=1αifi(x) = 0. Choose distinct x1, ..., xn ∈ X . We have

thus have that for all j ∈ [n],
∑n

i=1αifi(xj) = 0. This can be written in matrix form:
f1(x1) · · · f1(xn)

... . . . ...
fn(x1) · · · fn(xn)

α = 0 , (5.76)

which implies that the columns are linearly dependent.
We now show the “only if” part. Suppose that for all {x1, . . . , xn} ⊆ X , the fam-

ily of vectors ((f1(xi), ..., fn(xi)))n
i=1 is linearly dependent. This means that the set

U = span{(f1(x), ..., fn(x)) | x ∈ X} is a proper linear subspace of Rn. This means
that there is a nonzero u ∈ U⊥, the orthogonal complement of U . By definition, u is orthogonal
to all elements in {(f1(x), ..., fn(x)) | x ∈ X}. In other words, for all x ∈ X ,

∑n
i=1 uifi(x) = 0.

Hence the fi are linearly dependent.

A.2. Proof of Proposition 5.1

Proposition 5.1 (Linking dependency graph and Jacobian). Let h be a C1 function, i.e. continuously

differentiable, from Rn to Rm and letH be its dependency graph (Definition 5.2). Then,

Hi,j = 0 ⇐⇒ For all a ∈ Rn , Dh(a)i,j = 0 . (5.7)

Proof The “ =⇒ ” direction holds because since we can simply differentiate hi(a) = h̄i(a−j) w.r.t.
aj to get zero.

We now show the “ ⇐= ” direction. Suppose that for all a ∈ Rn, Dh(a)i,j = 0. We must
now show that hi(a) is constant in aj for all a−j . Choose any a0,a1 ∈ Rn such that a0

−j = a1
−j .

Thanks to the fundamental theorem of calculus, we can write

hi(a1)− hi(a0) =
∫

[0,1]

d

dα
hi((1− α)a0 + αa1))dα (5.77)

=
∫

[0,1]
Dh((1− α)a0 + αa1)i,·︸ ︷︷ ︸

zero at j

· (a1 − a0)︸ ︷︷ ︸
zero except at j

dα (5.78)

= 0 . (5.79)
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Since a0 and a1 were arbitrary points such that a0
−j = a1

−j , this means the function hi(a) is
constant in aj for all values of a−j .

A.3. Proof of Proposition 5.2

In this section, we prove Proposition 5.2. Before doing so, we first recall the definition of the
support of a random variable (Definition 5.19) and prove a useful lemma (Lemma 5.6).

Definition 5.19. (Support of a random variable) Let x be a random variable with values in Rn with

distribution Px. Let On be the standard topology of Rn (i.e. the set of open sets of Rn). The support

of x is defined as

supp(x) := {x ∈ Rn | x ∈ O ∈ On =⇒ Px(O) > 0} . (5.80)

Lemma 5.6. Let z be a random variable with values in Rm with distribution Pz and y := f(z)
where f : supp(z)→ Rn is a homeomorphism onto its image. Then

f(supp(z)) ⊆ supp(y) ⊆ f(supp(z)) . (5.81)

where the closure is taken w.r.t. to the topology of Rn.

Proof We first prove that f(supp(z)) ⊆ supp(y). Let y0 ∈ f(supp(z)) and N be an open
neighborhood of y0, i.e. y0 ∈ N ∈ On. Note that there exists z0 ∈ supp(z) such that f(z0) = y0.
Note that z0 ∈ f−1({y0}) ⊆ f−1(N) and that, by continuity of f , f−1(N) is an open neighborhood
of z0. Since z0 ∈ supp(z), we have

0 < Pz(f−1(N)) (5.82)

= Pz ◦ f−1(N) (5.83)

= Py(N) . (5.84)

Hence y0 ∈ supp(y), which concludes the “⊆” part.
We now prove the other inclusion. Let y0 ∈ supp(y) and suppose, by contradiction, that

y0 ̸∈ f(supp(z)). Since f(supp(z)) is closed in Rn, there exists N s.t. y0 ∈ N ∈ On with
N ∩ f(supp(z)) = ∅. Since y0 ∈ supp(y),

0 < Py(N) (5.85)

= Pz(f−1(N)) (5.86)

= Pz(∅) = 0 . (5.87)

The above contradiction implies that y0 ∈ f(supp(z)).
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Proposition 5.2 (Identifiability up to diffeomorphism). Let θ := (f , p,G) and θ̂ := (f̂ , p̂, Ĝ) be

two models satisfying Assumption 5.1. If θ ∼obs θ̂ (Def. 5.4), then θ ∼diff θ̂ (Def. 5.5).

Proof
Equality of Denoised Distributions. Given an arbitrary a<T ∈ AT and a parameter θ =

(f , p,G), let Px≤T |a<T ;θ be the conditional probability distribution of x≤T , let Pz≤T |a<T ;θ be the
conditional probability distribution of z≤T and let Pn≤T be the probability distribution of n≤T (the
Gaussian noises added on f(z≤T ), defined in Sec. 5.2.1). Let yt := f(zt) and Py≤T |a<T ;θ be its
conditional probability distribution. First, notice that

Px≤T |a<T ;θ = Py≤T |a<T ;θ ∗ Pn≤T , (5.88)

where ∗ is the convolution operator between two measures. We now show that if two models agree
on the observations, i.e. Px≤T |a<T ;θ = Px≤T |a<T ;θ̂, then Py≤T |a<T ;θ = Py≤T |a<T ;θ̂. The following
argument makes use of the Fourier transform F generalized to arbitrary probability measures. This
tool is necessary to deal with measures which do not have a density w.r.t either the Lebesgue or the
counting measure, as is the case of Py≤T |a<T ;θ (all its mass is concentrated on the set f(Rdz)). See
Pollard [2001, Chapter 8] for an introduction and useful properties.

Px≤T |a<T ;θ = Px≤T |a<T ;θ̂ (5.89)

Py≤T |a<T ;θ ∗ Pn≤T = Py≤T |a<T ;θ̂ ∗ Pn≤T (5.90)

F(Py≤T |a<T ;θ ∗ Pn≤T ) = F(Py≤T |a<T ;θ̂ ∗ Pn≤T ) (5.91)

F(Py≤T |a<T ;θ)F(Pn≤T ) = F(Py≤T |a<T ;θ̂)F(Pn≤T ) (5.92)

F(Py≤T |a<T ;θ) = F(Py≤T |a<T ;θ̂) (5.93)

Py≤T |a<T ;θ = Py≤T |a<T ;θ̂ , (5.94)

where (5.91) & (5.94) use the fact that the Fourier transform is invertible, (5.92) is an application
of the fact that the Fourier transform of a convolution is the product of their Fourier transforms
and (5.93) holds because the Fourier transform of a Normal distribution is nonzero everywhere.
Note that the latter argument holds because we assume σ2, the variance of the Gaussian noise added
to yt, is the same for both models. Notice that, since f(Rdz) and f̂(Rdz) are closed in Rdx and the
support of z≤T is Rdz×T , Lemma 5.6 implies that

f(Rdz×T ) = supp(Py≤T |a<T ;θ) & supp(Py≤T |a<T ;θ̂) = f̂(Rdz×T ) (5.95)

where we overloaded the notation by defining f(z≤T ) := (f(z1), ...,f(zT )) and analogously for
f̂(z≤T ). Since both measure in (5.94) are equal, their supports must also be. This implies that
f(Rdz) = f̂(Rdz), which is part of the definition of equivalence up to diffeomorphism (Defini-
tion 5.5).
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Equality of densities. Continuing with (5.94),

Py≤T |a<T ;θ = Py≤T |a<T ;θ̂ (5.96)

Pz≤T |a<T ;θ ◦ f−1 = Pz≤T |a<T ;θ̂ ◦ f̂
−1 (5.97)

Pz≤T |a<T ;θ ◦ f−1 ◦ f̂ = Pz≤T |a<T ;θ̂ (5.98)

Pz≤T |a<T ;θ ◦ v = Pz≤T |a<T ;θ̂ , (5.99)

where v := f−1 ◦ f̂ is a composition of diffeomorphisms and thus a diffeomorphism from Rdz to
itself. Note that this composition is well defined because f(Rdz) = f̂(Rdz). We chose to work
directly with measures (functions on sets), as opposed to manifold integrals in Khemakhem et al.
[2020a], because it simplifies the derivation of (5.99) and avoids having to define densities w.r.t.
measures concentrated on a manifold.

The density of Pz≤T |a<T ;θ ◦ v w.r.t. to the Lebesgue measure is given by the change-of-variable
rule for random vectors (which can be applied because v is a diffeomorphism) and is given by∏T

t=1 p(v(zt) | v(z<t),a<t)| detDv(zt)|, where p refers to the density model with parameter
θ and Dv(zt) is the Jacobian matrix of v. Since Pz≤T |a<T ;θ ◦ v = Pz≤T |a<T ;θ̂, their respective
densities w.r.t. Lebesgue must also agree:

T∏
t=1

p̂(zt | z<t,a<t) =
T∏

t=1

p(v(zt) | v(z<t),a<t)| detDv(zt)| , (5.100)

where p̂ refers to the conditional density of the model with parameter θ̂.
For a given t0, we have

t0∏
t=1

p̂(zt | z<t,a<t) =
t0∏

t=1

p(v(zt) | v(z<t),a<t)| detDv(zt)| , (5.101)

by integrating first zT , then zt91, then ..., up to zt0+1. Note that we can integrate zt0 and get
t0−1∏
t=1

p̂(zt | z<t,a<t) =
t0−1∏
t=1

p(v(zt) | v(z<t),a<t)| detDv(zt)| . (5.102)

By dividing (5.101) by (5.102), we get

p̂(zt0 |z<t0 ,a<t0) = p(v(zt0) | v(z<t0),a<t0)| detDv(zt0)| , (5.103)

which completes the proof.
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A.4. The consistency relations (Definitions 5.13 & 5.14) are equivalence rela-
tions

In this section, we demonstrate that the relations ∼acon and ∼zcon are equivalence relations by
leveraging the the fact that the set ofG-preserving diffeomorphisms form a group under composition
(Proposition 5.5). We start by showing a fact that will be useful below.

Lemma 5.7. LetG ∈ {0, 1}m×n.

(1) A map c : Rm → Rm is G-preserving if and only if c is GP -preserving, where P is an

n× n permutation matrix.

(2) A map c : Rm → Rm isG-preserving if and only if P ◦ c ◦ P⊤ is PG-preserving, where

P is a m×m permutation matrix.

(3) When m = n, a map c : Rm → Rm is G-preserving if and only if P ◦ c ◦ P⊤ is PGP⊤-

preserving, where P is a m×m permutation matrix.

Proof Let C be the dependency graph of c.
(1) C⊤Rm×n

G ⊆ Rm×n
G ⇐⇒ C⊤Rm×n

G P ⊆ Rm×n
G P ⇐⇒ C⊤Rm×n

GP ⊆ Rm×n
GP

(2) First, notice that the dependency graph of P ◦ c ◦ P⊤ is PCP⊤.

(PCP⊤)⊤Rm×n
PG ⊆ Rm×n

PG ⇐⇒ PC⊤P⊤PRm×n
G ⊆ PRm×n

G ⇐⇒ C⊤Rm×n
G ⊆ Rm×n

G

(3) This is a consequence of the first two statements.

We are now ready to show that the relation ∼acon (Definition 5.13) is an equivalence relation.

Proposition 5.9. The consistency relation, ∼acon (Def. 5.13), is an equivalence relation.

Proof
Reflexivity. It is easy to see that θ ∼acon θ, by simply setting v(z) := z with P := I .
Symmetry. Assume θ ∼acon θ̃. Hence, we have PGa = G̃a as well as

f(Rdz) = f̃(Rdz), and (5.104)

p̃(zt | z<t,a<t) = p(v(zt) | v(z<t),a<t)| detDv(zt)| , (5.105)

where v := f−1 ◦ f̃ can be written as v := c ◦ P⊤, where c is a Ga-preserving diffeomorphism
and P is a permutation. We can massage (5.105) to get

p(zt | z<t,a<t) = p̃(v−1(zt) | v−1(z<t),a<t)| detDv−1(zt)| . (5.106)
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Of course, we also have that P̃ G̃a = Ga, where P̃ := P⊤. Now the only thing left to prove is that
v−1 can be written as c̃ ◦ P̃⊤ where c̃ is G̃a-preserving. We know that

v−1 = P ◦ c−1 = P ◦ c−1 ◦ P⊤︸ ︷︷ ︸
c̃:=

◦P = c̃ ◦ P̃⊤ . (5.107)

Note that c−1 isGa-preserving and thus, by Lemma 5.7, c̃ is PGa-preserving, i.e. G̃a-preserving.
Hence, ∼acon is symmetric.

Transitivity. Suppose θ ∼acon θ̃ and θ̃ ∼acon θ̂. This means

P1G
a = G̃a , (5.108)

f(Rdz) = f̃(Rdz), and (5.109)

p̃(zt | z<t,a<t) = p(v1(zt) | v1(z<t),a<t)| detDv1(zt)| , (5.110)

where v1 := c1 ◦ P⊤
1 with c1 beingGa-preserving; and

P2G̃
a = Ĝa , (5.111)

f̃(Rdz) = f̂(Rdz), and (5.112)

p̂(zt | z<t,a<t) = p̃(v2(zt) | v2(z<t),a<t)| detDv2(zt)| , (5.113)

where v2 := c2 ◦ P⊤
2 with c2 being G̃a-preserving.

To show that θ ∼acon θ̂, we first combine (5.108) with (5.111) to get

P2P1︸ ︷︷ ︸
P :=

Ga = Ĝa . (5.114)

Of course we also have that f(Rdz) = f̃(Rdz) = f̂(Rdz). By massaging both (5.110) and (5.113),
we get:

p̂(zt | z<t,a<t) = p(v1 ◦ v2(zt) | v1 ◦ v2(z<t),a<t)| detD(v1 ◦ v2)(zt)| . (5.115)

Define v := v1 ◦ v2. We now want to show that v can be written has v = c ◦ P⊤ where c is
Ga-preserving. We have that

v1 ◦ v2 = c1 ◦ P⊤
1 ◦ c2 ◦ P⊤

2 (5.116)

= c1 ◦ P⊤
1 ◦ P⊤

2︸ ︷︷ ︸
P⊤=

◦P2 ◦ c2 ◦ P⊤
2︸ ︷︷ ︸

ĉ:=

(5.117)

= c1 ◦ P⊤ ◦ ĉ (5.118)
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where, by Lemma 5.7, ĉ is P2G̃
a-preserving, i.e. Ĝa-preserving. We continue and get that

v1 ◦ v2 = c1 ◦ P⊤ ◦ ĉ (5.119)

= c1 ◦ P⊤ ◦ ĉ ◦ P︸ ︷︷ ︸
c′:=

◦P⊤ (5.120)

= c1 ◦ c′ ◦ P⊤ , (5.121)

where, by Lemma 5.7, c′ is P⊤Ĝa-preserving, i.e. Ga-preserving (by (5.114)). Since both c1 and
c′ areGa-preserving, c := c1 ◦ c′ isGa-preserving, which concludes the proof.

The same can be shown for ∼zcon (Definition 5.14).

Proposition 5.10. The consistency relation, ∼zcon (Def. 5.14), is an equivalence relation.

Proof The proof is exactly analogous to the proof that ∼acon is an equivalence relation. Essentially,
every statement of the form “PGa = G̃a” becomes “PGzP⊤ = G̃z” and statements of the form
“c isGa-preserving” becomes “c isGz-preserving and (Gz)⊤-preserving”. The full proof is left as
an exercise to the reader.

A.4.1. Combining equivalence relations.
Proposition 5.6. Let θ := (f , p,G) and θ̃ := (f̃ , p̃, G̃) be two models satisfying Assumptions 5.1,

5.2 & 5.3. We have θ ∼z,a
con θ̃ if and only if θ ∼acon θ̃ and θ ∼zcon θ̃.

Proof The “only if” part of the statement is trivial. We now show the “if" part.
Let v := f−1 ◦ f̃ . Since θ ∼acon θ̃, we have that G̃a = PGa and v = c ◦ P⊤ where P a

permutation matrix and c is Ga-preserving. Since θ ∼zcon θ̃, we have that G̃z = P̄GzP̄⊤ and
v = c̄ ◦ P̄⊤ where P̄ is a permutation matrix and c̄ isGz-preserving and (Gz)⊤-preserving. LetC
and C̄ be the dependency graphs c and c̄, respectively.

Choose an arbitrary z. Since Dc(z) is invertible, Lemma 5.2 implies that there exists a
permutation P0 such that P⊤

0 ⊆ Dv(z), which in turns implies that P⊤
0 ⊆ C̄. Because P⊤

0 ⊆ C̄,
we have that P⊤

0 is Gz-preserving and (Gz)⊤-preserving (Proposition 5.3). By closure under
composition and inversion, c̄ ◦ P0 isGz- and (Gz)⊤-preserving.

Note that

c ◦ P⊤ = c̄ ◦ P̄⊤ (5.122)

=⇒ CP⊤ = C̄P̄⊤ (5.123)

CP⊤P̄ = C̄ ⊇ P⊤
0 (5.124)

=⇒ C ⊇ P⊤
0 P̄

⊤P . (5.125)

This means the permutation P⊤
0 P̄

⊤P must beGa-preserving since C is (Proposition 5.3).
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This further implies that CP⊤P̄P0 = C̄P0 isGa-preserving by closure under multiplication
(recall C isGa-preserving too). Hence c̄ ◦ P0 isGa-preserving.

We thus have that v = (c̄ ◦ P0)(P̄P0)⊤ where (c̄ ◦ P0) is Ga-, Gz- and (Gz)⊤-preserving.
The only thing left to show is that (P̄P0)Ga = G̃a and that (P̄P0)Gz(P̄P0)⊤ = G̃z. The former
holds since

(P̄P0)Ga = P (P⊤P̄P0)Ga = PGa = G̃a ,

where the second equality leverages the fact that P⊤P̄P0 isGa-preserving. Furthermore,

(P̄P0)Gz(P̄P0)⊤ = P̄Gz(P̄P0)⊤ = P̄GzP⊤
0 P̄

⊤ = P̄ (P0(Gz)⊤)⊤P̄⊤ = P̄GzP̄⊤ = G̃z ,

where the first and fourth equalities leveraged the fact that P0 isGz- and (Gz)⊤-preserving.

A.5. Technical lemmas in the proof of Theorems 5.1, 5.2 & 5.3

The goal of this section is to introduce and prove Lemma 5.12 which was crucial in proofs of
Theorems 5.1, 5.2 & 5.3. To prove it, we need a few more results, which we present next.

The following two lemmas are standard, but we provide them with proofs for completeness.

Lemma 5.8. Let f : Rn → R be continuous and A ⊆ Rn. If, for all x ∈ A, f(x) = 0, then the

equality holds on A.

Proof We have that A ⊆ f−1({0}). Since {0} is closed, f−1({0}) is also closed by continuity of f .
This means A ⊆ f−1({0}) (since the closure ofA is the smallest closed set containingA).

Lemma 5.9. Let µ be the Lebesgue measure on Rdz and let E0 ⊆ Rdz be a zero measure set, i.e.

µ(E0) = 0. Then, Rdz \ E0 = Rdz .

Proof Clearly, Rdz \ E0 ⊆ Rdz .
We now show that Rdz ⊆ Rdz \ E0. Take z0 ∈ Rdz and let U be an open set of Rdz containing

z0. Every open sets have nonzero Lebesgue measure, so

0 ̸= µ(U) = µ(U ∩ Rdz) = µ(U ∩ (Rdz \ E0)) =⇒ U ∩ (Rdz \ E0) ̸= ∅ . (5.126)

Since U was arbitrary, this means z0 ∈ Rdz \ E0.

This simple lemma will come in handy when proving Lemma 5.11.

Lemma 5.10. If a permutation P is notG-preserving and C is aG-preserving matrix, we have

that CP⊤ and P⊤C have a zero on their diagonal.
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Proof Assume P is not G-preserving, hence there exists i, j such that Gi,· ̸⊆ Gj,·, but Pi,j = 1.
Now note that

(CP⊤)i,i = Ci,·(Pi·)⊤ = Ci,·ej = Ci,j , (5.127)

which is equal to zero because C isG-preserving andGi,· ̸⊆ Gj,·. Similarly,

(P⊤C)j,j = (P·,j)⊤C·,j = e⊤
i C·,j = Ci,j = 0 . (5.128)

which concludes the proof.

The following lemma is the same as Lemma 5.12 which is used to proved Theorems 5.1, 5.2 &
5.3, except it does not take into account the “almost everywhere” subtlety. Lemma 5.12 will extend
it to deal with this difficulty.

Lemma 5.11. LetG ∈ {0, 1}m×n, let Z be a connected subset of some topological space and let

L : Z → Rm×m be a continuous function such that L(z) is invertible for all z ∈ Z . Suppose that,

for all z ∈ Z , there exists a permutation matrix P (z) such that L(z)P (z) isG-preserving. Then,

there exists a permutation matrix P such that, for all z ∈ Z , L(z)P isG-preserving.

Proof The goal of this lemma is to show that in the statement above, one can change the order of
the “for all z ∈ Z” and “there exists a permutation”. To do that, we show that if Z is connected and
the map L(·) is continuous, then one can find a single permutation that works for all z ∈ Z .

Let G be the set ofGa-preserving matrices. Recall that, by Proposition 5.3, G corresponds to all
matrices that have some set of entries equal to zero.

First, since Z is connected and L is continuous, its image, L(Z), must be connected (by
[Munkres, 2000, Theorem 23.5]).

Second, from the hypothesis of the lemma, we know that

L(Z) ⊆ L :=
( ⋃

π∈Sm

GPπ

)
\ {singular matrices} , (5.129)

where Sm is the set of permutations and GPπ = {LPπ | L ∈ G}. We can rewrite the set L above
as

L =
( ⋃

π∈Sm

GPπ \ {singular matrices}

)
. (5.130)

We now define an equivalence relation ∼ over permutations: π ∼ π′ iff PπP
⊤
π′ isG-preserving.

One can verify that the relation ∼ is indeed an equivalence relation by using the fact that invertible
G-preserving matrices form a group (Proposition 5.4). We notice that

π ∼ π′ =⇒ G = GPπP
⊤
π′ =⇒ GPπ′ = GPπ , (5.131)
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where the first implication holds becauseG-preserving matrices are closed under matrix multiplica-
tion (Proposition 5.4). Let Sm/ ∼ be the set of equivalence classes induce by ∼ and let Π stand for
one such equivalence class. Thanks to (5.131), we can define, for all Π ∈ Sm/ ∼, the following
set:

VΠ := GPπ \ {singular matrices}, for some π ∈ Π , (5.132)

where the specific choice of π ∈ Π is arbitrary (any π′ ∈ Π would yield the same definition,
by (5.131)). This construction allows us to write

L =
⋃

Π∈Sm/∼

VΠ . (5.133)

We now show that {VΠ}Π∈Sm/∼ forms a partition of L. Choose two distinct equivalence classes of
permutations Π and Π′ and let π ∈ Π and π′ ∈ Π′ be representatives. We will now prove that

GPπ ∩ GPπ′ ⊆ {singular matrices} . (5.134)

To achieve this, we proceed by contradiction: Suppose there exists an invertible matrix A ∈
GPπ ∩GPπ′ . By Lemma 5.2, there exists a permutation P s.t. AP⊤ has no zero on its diagonal. Of
course, the permutation P belongs to only one equivalence class and thus either P ̸∈ Π or P ̸∈ Π′.
Without loss of generality, assume the former. We thus have that P ̸∼ π and thus PπP

⊤ is not
G-preserving. We can thus write

A ∈ GPπ ∩ GPπ′ =⇒ AP⊤ ∈ GPπP
⊤ ∩ GPπ′P⊤ . (5.135)

By Lemma 5.10, all matrices in GPπP
⊤ have a zero on their diagonal. This is a contradiction with

AP⊤ ∈ GPπP
⊤, since, as we said, AP⊤ has no zero on its diagonal. We thus conclude that no

invertible matrix is in the intersection GPπ ∩ GPπ′ and thus (5.134) holds.
We thus have that

VΠ ∩ VΠ′ = ∅ , (5.136)

which shows that {VΠ}Π∈Sm/∼ is indeed a partition of L.
Each VΠ is closed in L (w.r.t. the subset topology inherited from Rm×m) since

VΠ = GPπ \ {singular matrices} = L ∩ GPπ︸︷︷︸
closed in Rm×m

. (5.137)

Moreover, VΠ is open in L, since

VΠ = L \
⋃

Π′ ̸=Π

VΠ′

︸ ︷︷ ︸
closed in L

. (5.138)
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Thus, for any Π ∈ S(B)/ ∼, the sets VΠ and
⋃

Π′ ̸=Π VΠ′ forms a separation (see [Munkres, 2000,
Section 23]). Since L(Z) is a connected subset of L, it must lie completely in VΠ or

⋃
Π′ ̸=Π VΠ′ ,

by [Munkres, 2000, Lemma 23.2]. Since this is true for all Π, it must follow that there exists a
Π∗ such that L(Z) ⊆ VΠ∗ . Choose any representative P∗ ∈ Π∗. We thus have that, for all z ∈ Z ,
L(z) = C(z)P⊤

∗ , where C(z) isG-preserving, which completes the proof.

The goal of the next result is to relax the conditions of Lemma 5.11 so that L(z)P (z) is
G-preserving for almost all z ∈ Rdz .

Lemma 5.12. Let G ∈ {0, 1}m×n and let L : Rdz → Rm×m be a continuous function such that

L(z) is invertible for all z ∈ Rdz . Suppose that, for almost all z ∈ Rdz (i.e. except on a set

E0 of Lebesgue measure zero), there exists a permutation matrix P (z) such that L(z)P (z) is

G-preserving. Then, there exists a permutation matrix P such that, for all z ∈ Rdz , L(z)P is

G-preserving.

Proof We know that for all z ∈ Rdz \ E0, where µ(E0) = 0 (Lebesgue measure zero), there exists
a permutation matrix P (z) such that L(z)P (z) isG-preserving. For all permutations P , define
Z(P ) := {z ∈ Rdz \ E0 | P (z) = P }. The collection of all sets Z(P ) is finite (since there are
finitely many permutations) and form a partition of Rdz \ E0. Of course, for all P , L(z)P is
G-preserving for all z ∈ Z(P ). By Lemma 5.8, we can extend this statement to the closure, i.e. for
all z ∈ Z(P ), L(z)P isG-preserving.

Furthermore, we have that
⋃
P Z(P ) =

⋃
P Z(P ) = Rdz \ E0 = Rdz , where the first equality

is a standard property of closure (which holds only for finite unions), and the last equality holds
by Lemma 5.9. We thus have that, for all z ∈ Rdz , there exists a permutation P (z) such that
L(z)P (z) isG-preserving. Since Rdz is connected we can apply Lemma 5.11 to get the desired
conclusion.

A.6. Connecting to the graphical criterion of Lachapelle et al. [2022]

The goal of this section is to prove Proposition 5.7 which states if some graphical criterion
holds (Assumption 5.5), then θ ∼z,a

con θ̂ implies θ ∼perm θ̂, i.e. complete disentanglement. We recall
Assumption 5.5.

Assumption 5.5 (Graphical criterion, Lachapelle et al. [2022]). LetG = [Gz Ga] be a graph. For

all i ∈ {1, ..., dz},  ⋂
j∈Chz

i

Paz
j

 ∩
 ⋂

j∈Paz
i

Chz
j

 ∩
 ⋂

ℓ∈Paa
i

Cha
ℓ

 = {i} ,
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where Paz
i and Chz

i are the sets of parents and children of node zi inGz, respectively, while Cha
ℓ

is the set of children of aℓ inGa.

We note that the above assumption is slightly different from the original one from Lachapelle
et al. [2022], since the intersections run over Chz

i , Paz
i and Paai instead of over some sets of

indexes I,J ⊆ {1, ..., dz} and L ⊆ {1, ..., da}. This slightly simplified criterion is equivalent to
the original one, which we now demonstrate for the interested reader.

Proposition 5.11. LetG = [Gz Ga] ∈ {0, 1}dz×(dz+da). The criterion of Assumption 5.5 holds for

G if and only if the following holds forG: For all i ∈ {1, ..., dz}, there exist sets I,J ⊆ {1, ..., dz}
and L ⊆ {1, ..., da} such that(⋂

j∈I

Pazj

)
∩

(⋂
j∈J

Chzj

)
∩

(⋂
ℓ∈L

Chaℓ

)
= {i} ,

Proof The direction “ =⇒ ” is trivial, since we can simply choose I := Chz
i , J := Paz

i and
L := Paa

i .
To show the other direction, we notice that we must have I ⊆ Chzi , J ⊆ Paz

i and L ⊆ Paa
i ,

otherwise one of the sets in the intersection would not contain i, contradicting the criterion.
Thus, the criterion of Def. 5.5 intersects the same sets or more sets. Moreover these potential
additional sets must contain i because of the obvious facts that j ∈ Chz

i ⇐⇒ i ∈ Pazj and
ℓ ∈ Paa

i ⇐⇒ i ∈ Chaℓ , thus they do not change the result of the intersection.

To prove Proposition 5.7, we will need the following lemma.

Lemma 5.13. Let G ∈ {0, 1}m×n and c be a diffeomorphism with dependency graph given by

C ∈ {0, 1}m×m (Definition 5.2). The function c isG-preserving (Definition 5.12) if and only if

∀i,Ci,· ⊆
⋂

k∈Gi,·

G·,k .

Proof We leverage Proposition 5.3.

Gi,· ̸⊆ Gj,· ⇐⇒ ∃k s.t. Gi,k = 1 andGj,k = 0 (5.139)

⇐⇒ ∃k ∈ Gi,· s.t. j ̸∈ G·,k (5.140)

⇐⇒ j ̸∈
⋂

k∈Gi,·

G·,k . (5.141)
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Proposition 5.7 (Complete disentanglement as a special case). Let θ := (f , p,G) and θ̂ :=
(f̂ , p̂, Ĝ) be two models satisfying Assumptions 5.1, 5.2 & 5.3. If θ ∼z,a

con θ̂ and G satisfies

Assumption 5.5, then θ ∼perm θ̂.

Proof By definition of∼z,a
con , we know that the entanglement graph for (f , f̂) is given by V = CP⊤

where P is a permutation andC is a binary matrix that isGa-preserving,Gz-preserving and (Gz)⊤-
preserving. Using Lemma 5.13, we have that, for all i,

Ci,· ⊆

 ⋂
j∈Gz

i,·

Gz
·,j

 ∩
 ⋂

j∈Gz
·,i

Gz
j,·

 ∩
 ⋂

j∈Ga
i,·

Ga
·,j

 (5.142)

=

 ⋂
j∈Paz

i

Chzj

 ∩
 ⋂

j∈Chz
i

Pazj

 ∩
 ⋂

ℓ∈Paa
i

Chaℓ

 (5.143)

= {i} . (5.144)

Thus C is in fact the identity matrix, and hence θ ∼perm θ̂.

B. Identifiability theory - Exponential family case

B.1. Technical Lemmas and definitions

We recall the definition of a minimal sufficient statistic in an exponential family, which can be
found in Wainwright and Jordan [2008, p. 40].

Definition 5.20 (Minimal sufficient statistic). Given a parameterized distribution in the exponential

family, as in (5.61), we say its sufficient statistic si is minimal when there is no v ̸= 0 such that

v⊤si(z) is constant for all z ∈ Z .

The following Lemma gives a characterization of minimality which will be useful in the proof
of Thm. 5.4.

Lemma 5.14 (Characterization of minimal s). A sufficient statistic of an exponential family distri-

bution s : Z → Rk is minimal if and only if there exists z(0), z(1), ..., z(k) belonging to the support

Z such that the following k-dimensional vectors are linearly independent:

s(z(1))− s(z(0)), ..., s(z(k))− s(z(0)) . (5.145)

Proof. We start by showing the “if” part of the statement. Suppose there exist z(0), ...,z(k) in Z
such that the vectors of (5.145) are linearly independent. By contradiction, suppose that s is not
minimal, i.e. there exist a nonzero vector v and a scalar b such that v⊤s(z) = b for all z ∈ Z . Notice
that b = v⊤s(z(0)). Hence, v⊤(s(z(i))− s(z(0))) = 0 for all i = 1, ..., k. This can be rewritten in
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matrix form as

v⊤[s(z(1))− s(z(0)) ... s(z(k))− s(z(0))] = 0 , (5.146)

which implies that the matrix in the above equation is not invertible. This is a contradiction.
We now show the “only if ” part of the statement. Suppose that there is no z(0), ..., z(k) such

that the vectors of (5.145) are linearly independent. Choose an arbitrary z(0) ∈ Z . We thus have
that U := span{s(z) − s(z(0)) | z ∈ Z} is a proper subspace of Rk. This means the orthogonal
complement of U , U⊥, has dimension 1 or greater. We can thus pick a nonzero vector v ∈ U⊥ such
that v⊤(s(z)− s(z0)) = 0 for all z ∈ Z , which is to say that v⊤s(z) is constant for all z ∈ Z , and
thus, s is not minimal. ■

B.2. Proof of linear identifiability (Theorem 5.4)

Theorem 5.4 (Conditions for linear identifiability - Adapted from Khemakhem et al. [2020a]). Let

θ := (f ,λ,G) and θ̂ := (f̂ , λ̂, Ĝ) be two models satisfying Assumptions 5.1, 5.2 & 5.9. Further

assume that

(1) [Observational equivalence] θ ∼obs θ̂ (Definition 5.4);

(2) [Minimal sufficient statistics] For all i, the sufficient statistic si is minimal (see below).

(3) [Sufficient variability] The natural parameter λ varies “sufficiently" as formalized by

Assumption 5.10 (see below).

Then, θ ∼lin θ̂ (Def. 5.17).

Proof First, we apply Proposition 5.2 to get that

p̃(zt | z<t,a<t) = p(v(zt) | v(z<t),a<t)| detDv(zt)| , (5.147)

Linear relationship between s(f−1(x)) and s(f̂−1(x)). By taking the logarithm on each sides
of (5.147) and expliciting the exponential family form, we get

dz∑
i=1

log hi(zt
i) + si(zt

i)⊤λi(Gz
i ⊙ z<t,Ga

i ⊙ a<t)− ψi(z<t,a<t) (5.148)

=
dz∑

i=1

log hi(vi(zt)) + si(vi(zt)))⊤λ̂i(Ĝz
i ⊙ v(z<t), Ĝa

i ⊙ a<t)− ψ̂i(v(z<t),a<t)

+ log | detDv(zt)|

Note that (5.148) holds for all z<t and a<t. In particular, we evaluate it at the points given in
the assumption of sufficient variability of Thm. 5.4. We evaluate the equation at (zt, z(r),a(r)) and
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(zt, z(0),a(0)) and take the difference which yields8

dz∑
i=1

si(zt
i)⊤[λi(Gz

i ⊙ z(r),G
a
i ⊙ a(r))− λi(Gz

i ⊙ z(0),G
a
i ⊙ a(0))]− ψi(z(r),a(r)) + ψi(z(0),a(0))

=
dz∑

i=1

si(vi(zt))⊤[λ̂i(Ĝz
i ⊙ v(z(r)), Ĝa

i ⊙ a(r))− λ̂i(Ĝz
i ⊙ v(z(0)), Ĝa

i ⊙ a(0))] (5.149)

− ψ̂i(v(z(r)),a(r)) + ψ̂i(v(z(0)),a(0))

We regroup all normalization constants ψ into a term d(z(r), z(0),a(r),a(0)) and write

s(zt)⊤[λ(z(r),a(r))− λ(z(0),a(0))]

=s(v(zt))⊤[λ̂(v(z(r)),a(r))− λ̂(v(z(0)),a(0))] + d(z(r), z(0),a(r),a(0)) . (5.150)

Define

w(r) := λ(z(r),a(r))− λ(z(0),a(0)) (5.151)

ŵ(r) := λ̂(v(z(r)),a(r))− λ̂(v(z(0)),a(0)) (5.152)

d(r) := d(z(r), z(0),a(r),a(0)) , (5.153)

which yields

s(zt)⊤w(r) = s(v(zt))⊤ŵ(r) + d(r) . (5.154)

We can regroup the w(r) into a matrix and the d(r) into a vector:

W := [w(1)... w(kdz)] ∈ Rkdz×kdz (5.155)

Ŵ := [ŵ(1)... ŵ(kdz)] ∈ Rkdz×kdz (5.156)

d := [d(1)... d(kdz)] ∈ R1×kdz . (5.157)

Since (5.154) holds for all 1 ≤ p ≤ kdz, we can write

s(zt)⊤W = s(v(zt))⊤Ŵ + d . (5.158)

Note thatW is invertible by the assumption of variability, hence

s(zt)⊤ = s(v(zt))⊤ŴW−1 + dW−1 . (5.159)

Let b := (dW−1)⊤ and L := (ŴW−1)⊤. We can thus rewrite as

s(zt) = Ls(v(zt)) + b . (5.160)

8Note that z(0) and z(r) can have different dimensionalities if they come from different time steps. It is not an issue to
combine equations from different time steps, since (5.148) holds for all values of t, zt, z<t and a<t.
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Invertibility of L. We now show that L is invertible. By Lemma 5.14, the fact that the si are
minimal is equivalent to, for all i ∈ {1, ..., dz}, having elements z(0)

i , ..., z(k)
i in Z such that the

family of vectors

si(z(1)
i )− si(z(0)

i ), ... , si(z(k)
i )− si(z(0)

i ) (5.161)

is linearly independent. Define

z(0) := [z(0)
1 . . . z

(0)
dz

]⊤ ∈ Rdz (5.162)

For all i ∈ {1, ..., dz} and all p ∈ {1, ..., k}, define the vectors

z(p,i) := [z(0)
1 . . . z

(0)
i−1 z

(p)
i z

(0)
i+1 . . . z

(0)
dz

]⊤ ∈ Rdz . (5.163)

For a specific 1 ≤ p ≤ k and i ∈ {1, ..., dz}, we can take the following difference based on (5.160)

s(z(p,i))−s(z(0)) = L[s(v(z(p,i)))− s(v(z(0)))] , (5.164)

where the left hand side is a vector filled with zeros except for the block corresponding to si(z(p,i)
i )−

si(z(0)
i ). Let us define

∆s(i) := [s(z(1,i))− s(z(0)) . . . s(z(k,i))− s(z(0))] ∈ Rkdz×k

∆ŝ(i) := [s(v(z(1,i)))− s(v(z(0))) . . . s(v(z(k,i)))− s(v(z(0)))] ∈ Rkdz×k .

Note that the columns of ∆s(i) are linearly independent and all rows are filled with zeros except for
the block of rows {(i− 1)k + 1, ..., ik}. We can thus rewrite (5.164) in matrix form

∆s(i) = L∆ŝ(i) . (5.165)

We can regroup these equations for every i by doing

[∆s(1) ... ∆s(dz)] = L[∆ŝ(1) ... ∆ŝ(dz)] . (5.166)

Notice that the newly formed matrix on the left hand side has size kdz × kdz and is block diagonal.
Since every block is invertible, the left hand side of (5.166) is an invertible matrix, which in turn
implies that L is invertible. This completes the proof.
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B.3. Proof of Theorem 5.5

Lemma 5.15. Let θ := (f , p,G) satisfy Assumptions 5.1, 5.2, 5.3, 5.4 & 5.9 and let q := log p.

Then

Dt
zq(zt | z<t,a<t) = λ(z<t,a<t)⊤Ds(zt) +D(log h)(zt) (5.167)

H t,τ
z,aq(zt | z<t,a<t) = Ds(zt)⊤Dτ

aλ(z<t,a<t) (5.168)

H t,τ
z,zq(zt | z<t,a<t) = Ds(zt)⊤Dτ

zλ(z<t,a<t) . (5.169)

Proof We have

log p(zt | z<t,a<t) := log h(zt) + s(zt)⊤λ(z<t,a<t)− ψ(z<t,a<t) (5.170)

log h(zt) + λ(z<t,a<t)⊤s(zt)− ψ(z<t,a<t) . (5.171)

We can differentiate the above w.r.t. zt to get

Dt
zq(zt | z<t,a<t) = λ(z<t,a<t)⊤Ds(zt) +D(log h)(zt) (5.172)

Differentiating the above w.r.t. zτ or aτ yields the desired result.

Theorem 5.5 (Disentanglement via sparse temporal dependencies in exponential families). Let

θ := (f ,λ,G) and θ̂ := (f̂ , λ̂, Ĝ) be two models satisfying Assumptions 5.1, 5.2, 5.3, 5.4, 5.9 as

well as all assumptions of Theorem 5.4. Further suppose that

(1) The sufficient statistic s is dz-dimensional (k = 1) and is a diffeomorphism from Rdz to

s(Rdz);
(2) [Sufficient influence of z] The Jacobian of the ground-truth transition function λ with

respect to z varies “sufficiently”, as formalized in Assumption 5.11;

Then, there exists a permutation matrix P such that PGzP⊤ ⊆ Ĝz. Further assume that

(3) [Sparsity regularization] ||Ĝz||0 ≤ ||Gz||0;

Then, θ ∼zcon θ̂ (Def. 5.14) & θ ∼lin θ̂ (Def. 5.17), which together implies that

v(z) = s−1(CP⊤s(z) + b) ,

where b ∈ Rdz and C ∈ Rdz×dz is invertible,Gz- and (Gz)⊤-preserving (Definition 5.11).

Proof Recall the equation we derived in Section 5.3.1:

H t,τ
z,z q̂(zt | z<t,a<t) = Dv(zt)⊤H t,τ

z,zq(v(zt) | v(z<t),a<t)Dv(zτ ) . (5.173)

Using Lemma 5.15, we get that

Ds(zt)⊤Dτ
z λ̂(z<t,a<t) = Dv(zt)⊤Ds(v(zt))⊤Dτ

zλ(v(z<t),a<t)Dv(zτ ) . (5.174)
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Note that Assumption 5.3 requires that Dτ
zλ(z<t,a<t) ⊆ Gz and that Dτ

z λ̂(z<t,a<t) ⊆ Ĝz.
Theorem 5.4 implies that there exist an invertible matrix L ∈ Rdz×dz and a vector b ∈ Rdz such that

v(z) = s−1(Ls(z) + b) . (5.175)

Taking the derivative of the above w.r.t. z, we obtain

Dv(z) = Ds−1(Ls(z) + b)LDs(z) (5.176)

= Ds−1(s(v(z)))LDs(z) (5.177)

= Ds(v(z))−1LDs(z) , (5.178)

where we used s(v(z)) = Ls(z) + b to go from the first to the second line and used the inverse
function theorem to go from the second to the third line. Plugging (5.178) into (5.174) yields

Ds(zt)⊤Dτ
z λ̂(z<t,a<t) (5.179)

= Ds(zt)⊤L⊤Ds(v(zt))−⊤Ds(v(zt))⊤Dτ
zλ(v(z<t),a<t)Ds(v(zτ ))−1LDs(zτ ) (5.180)

= Ds(zt)⊤L⊤Dτ
zλ(v(z<t),a<t)Ds(v(zτ ))−1LDs(zτ ) , (5.181)

which implies

Ds(zt)⊤Dτ
z λ̂(z<t,a<t) = Ds(zt)⊤L⊤Dτ

zλ(v(z<t),a<t)Ds(v(zτ ))−1LDs(zτ ) (5.182)

Dτ
z λ̂(z<t,a<t)Ds(zτ )−1 = L⊤Dτ

zλ(v(z<t),a<t)Ds(v(zτ ))−1L , (5.183)

where we right- and left-multiplied by Ds(zt)−⊤ and Ds(zτ ), respectively. Let us define

Λ(γ) := Dτ
zλ(v(z<t),a<t)Ds(v(zτ ))−1 Λ̂(γ) := Dτ

z λ̂(v(z<t),a<t)Ds(v(zτ ))−1 ,

where γ = (t, τ, z<t,a<t). Note that because Ds is diagonal, we have that Λ(γ) ⊆ Gz and
Λ̂(γ) ⊆ Ĝz. Using this notation, we can rewrite (5.183) as

Λ̂(γ)︸︷︷︸
⊆Ĝz

= L⊤ Λ(γ)︸︷︷︸
⊆Gz

L . (5.184)

Thanks to Assumption 5.11, we can apply the same argument as in Theorem 5.5 to show that
L = CP⊤ where C is a matrix that is bothGz-preserving and (Gz)⊤-preserving, as desired.

B.4. Relating with sufficient influence assumptions of Lachapelle et al. [2022]

In this section, we relate the nonparametric sufficient influence assumptions of this work, i.e.
Assumptions 5.7 & 5.8, to the analogous assumptions of Lachapelle et al. [2022] for exponential
families, i.e. Assumptions 5.11 & 5.12, the latter of which we recall below.
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Assumption 5.12 (Sufficient influence of a [Lachapelle et al., 2022]). Assume k = 1, i.e. the suffi-

cient statistics si are one-dimensional. For all ℓ ∈ {1, ..., da}, there exist {(z(r),a(r), ϵ(r), τ(r))}
|Cha

ℓ |
r=1

belonging to their respective support such that

span
{
λ(z(r),a(r) + ϵ(r)E

(ℓ,τ))− λ(z(r),a(r))
}|Cha

ℓ |
r=1 = Rdz

Cha
ℓ
,

where ϵ ∈ R and E(ℓ,τ) ∈ Rda×t is the one-hot matrix with the entry (ℓ, τ) set to one.

The following proposition shows that, when the exponential family holds with k = 1, we
have that (i) for the “sufficient influence of a" assumptions, the nonparametric and exponential
family versions are actually equivalent, and (ii) for the “sufficient influence of z” assumptions, the
nonparametric version implies the exponential family version.

Proposition 5.12 (Sufficient influence assumptions: nonparametric v.s. exponential). Let the

parameter θ := (f , p,G) satisfy Assumptions 5.1, 5.2, 5.3 & 5.9. Further assume that k = 1 and

that Ds(z) ∈ Rdz×dz is invertible everywhere. Then,

Sufficient influence of a: Assumption 5.7 (nonparametric) ⇐⇒ Assumption 5.12 (exponential family)

Sufficient influence of z: Assumption 5.8 (nonparametric) =⇒ Assumption 5.11 (exponential family)

Proof We start by proving the first equivalence for the sufficient influence of a assumptions. By
using Lemma 5.15 we see that

span
{
D

t(r)
z log p(z | z(r),a(r) + ϵ(r)E

(ℓ,τ(r)))−Dt(r)
z log p(z | z(r),a(r))

}|Cha
ℓ |

r=1
(5.185)

= span
{
Ds(z)⊤λ(z(r),a(r) + ϵ(r)E

(ℓ,τ(r)))−Ds(z)⊤λ(z(r),a(r))
}|Cha

ℓ |
r=1 (5.186)

= Ds(z)⊤span
{
λ(z(r),a(r) + ϵ(r)E

(ℓ,τ(r)))− λ(z(r),a(r))
}|Cha

ℓ |
r=1 . (5.187)

We start by showing “⇐= ”. Assumption 5.12 implies that (5.187) is equal to Ds(zt)⊤Rdz

Cha
ℓ

which
is equal to Rdz

Cha
ℓ

since Ds(zt) is invertible everywhere and is diagonal. To show “ =⇒ ”, we can
apply the same argument.

We now show that Assumption 5.8 implies Assumption 5.11. we again use Lemma 5.15 and see
that

Rdz
Gz = span

{
H

t(r),τ(r)
z,z log p(z | z(r),a(r))

}||Gz ||0

r=1
(5.188)

= span
{
Ds(z)⊤D

τ(r)
z λ(z(r),a(r))

}||Gz ||0
r=1 (5.189)

= Ds(z)⊤span
{
D

τ(r)
z λ(z(r),a(r))Ds(z)−1}||Gz ||0

r=1 Ds(z) . (5.190)

Now recall that, in Assumption 5.8, we had that z = zτ(r) for all r = 1, ..., ||Gz||0, which allows us
to write

Rdz
Gz = Ds(z)⊤span

{
D

τ(r)
z λ(z(r),a(r))Ds(zτ(r))−1}||Gz ||0

r=1 Ds(z) , (5.191)
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which implies

span
{
D

τ(r)
z λ(z(r),a(r))Ds(zτ(r))−1}||Gz ||0

r=1 = Ds(z)−⊤Rdz
GzDs(z)−1 = Rdz

Gz , (5.192)

where the last equality holds because Ds(z) is diagonal and invertible everywhere.

C. Experiments

C.1. Synthetic datasets

We now provide a detailed description of the synthetic datasets used in experiments of Sec-
tion 5.8.

For all experiments, the dimensionality of xt is dx = 20 and the ground-truth f is a random
neural network with three hidden layers of 20 units with Leaky-ReLU activations with negative
slope of 0.2. The weight matrices are sampled according to a 0-1 Gaussian distribution and, to
make sure f is injective as assumed in all theorems of this paper, we orthogonalize its columns.
Inspired by typical weight initialization in NN [Glorot and Bengio, 2010b], we rescale the weight
matrices by

√
2

1+0.22

√
2

din+dout
. The standard deviation of the Gaussian noise added to f(zt) is set

to σ = 10−2 throughout. Since the goal of the experiments is to validate our identifiability results,
which assume infinite data, all datasets considered here are very large: 1 million examples.

We now present the different choices of ground-truth p(zt | z<t,a<t) we explored in our
experiments. In all cases considered (except the experiment with k = 2 of Table 5.3), it is a
Gaussian with covariance 0.0001I independent of (z<t,a<t) and a mean given by some function
µ(zt−1,at−1). Notice that we hence are in the case where k = 1 with monotonic sufficient statistics,
which is not covered by the theory of Khemakhem et al. [2020a]. Throughout, we set dz = 10 and,
unless explicitly specified otherwise, we set da = 10. In all Time datasets, sequences have length
T = 2. In Action datasets, the value of T has no consequence since we assume there is no time
dependence.

C.1.1. Datasets satisfying graphical criterion. The datasets of this section satisfy the graphical
criterion of Section 5.3.6. This means our theory predicts complete disentanglement (Definition 5.7).
Unless specified otherwise, all datasets satisfy their respective sufficient influence assumptions
(Section 5.3.7). These can be checked using Remark 5.5 combined with standard facts about
independence of the sine and cosine functions.

ActionDiag (Figure 5.5). In this dataset, da = dx and the connectivity matrix between at91 and
zt is diagonal, which trivially implies that the graphical criterion of Section 5.3.6 is satisfied. The
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mean function is given by

µ(zt91,at91) := sin(at91) ,

where sin is applied element-wise. Moreover, the components of the action vector at91 are sampled
independently and uniformly between−2 and 2. The same sampling scheme is used for all following
datasets. One can check that the sufficient influence assumption (Assumption 5.6) holds.
ActionNonDiag (Figure 5.5). We consider a case where the graphical criterion of Section 5.3.6 is
satisfied non-trivially. Let

Ga :=



1 1
1 1

1 . . .
. . . 1

1 1


(5.193)

be the adjacency matrix between at91 and zt. The ith row, denoted byGa
i , corresponds to parents of

zt
i in at91. Note that it is analogous to the graph depicted in Figure 5.4, which satisfies the graphical

criterion. The mean function is given by

µ(zt91,at91) :=


Ga

1 · sin( 3
π
at91)

Ga
2 · sin( 4

π
at91 + 1)

...
Ga

dz
· sin(dz+2

π
at91 + dz − 1)

 . (5.194)

One can check that the sufficient influence assumption (Assumption 5.6) holds, thanks to the
independence of sines with different frequencies.
ActionNonDiagNoSuffInf (Table 5.3). This dataset has the same ground truth adjacency matrix as the
above dataset (5.193), but a different transition function which does not satisfy the assumption of
sufficient influence (Section 5.6). We sampled a matrixW with independent Normal 0-1 entries.
The mean function is thus

µ(zt91,at91) := (Ga ⊙W )at91 , (5.195)

where ⊙ is the Hadamard product (a.k.a. element-wise product).
ActionNonDiagk=2 (Table 5.3). This dataset has the “double diagonal” adjacency matrix of (5.193)
and the same mean function of (5.194), but the variance of zt (we assume diagonal covariance)
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depends on at−1 via

σ2(zt91,at91) := 1
10da


exp (Ga

1 · cos( 3
π
at91))

exp(Ga
2 · cos( 4

π
at91 + 1))

...
exp(Ga

dz
· cos(dz+2

π
at91 + dz − 1))

 . (5.196)

TimeDiag (Figure 5.5). In this dataset, each zt
i has only zt91

i as parent. This trivially satisfies the
graphical criterion of Section 5.3.6. The mean function is given by

µ(zt91,at91) := zt91 + 0.5 sin(zt91) ,

where the sin function is applied element-wise. Notice that no auxiliary variables are required.
One can check that the sufficient variability assumption (Assumption 5.10) and sufficient influence
assumption (Assumption 5.10) of Theorem 5.5 (exponential family) holds.
TimeNonDiag (Figure 5.5). We consider a case where the graphical criterion of Section 5.3.6 is
satisfied non-trivially. Let

Gz :=



1
1 1
... . . .

1 1
1 1 . . . 1 1


(5.197)

be the adjacency matrix between zt and zt91. The ith row of Gz, denoted by Gz
i , corresponds to

the parents of zt
i . Notice that this connectivity matrix has no 2-cycles and all self-loops are present.

Thus, by Proposition 5.8, it satisfies the graphical criterion of Section 5.3.6. The mean function in
this case is given by

µ(zt91,at91) := zt91 + 0.5


Gz

1 · sin( 3
π
zt91)

Gz
2 · sin( 4

π
zt91 + 1)

...
Gz

dz
· sin(dz+2

π
zt91 + dz − 1)

 , (5.198)

which is analogous to (5.194). One can verify that this transition model satisfies the sufficient
variability assumption (Assumption 5.10) and sufficient influence assumption (Assumption 5.10) of
Theorem 5.5 (exponential family) holds.
TimeNonDiagNoSuffInf (Table 5.3). This dataset has the same ground truth adjacency matrix as
in (5.197), but a different transition function that does not satisfy the assumption of sufficient
influence. We sampled a transition matrix W with independent Normal 0-1 entries. The transition
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function is thus

µ(zt91,at91) := zt91 + 0.5(Gz ⊙W )zt−1 . (5.199)

TimeNonDiagk=2 (Table 5.3). This dataset has the lower triangular adjacency matrix of (5.197)
and the same mean function of (5.198), but the variance of zt (we assume diagonal covariance)
depends on zt−1 via

σ2(zt91,at91) := 1
10dz


exp (Gz

1 · cos( 3
π
zt91))

exp(Gz
2 · cos( 4

π
zt91 + 1))

...
exp(Gz

dz
· cos(dz+2

π
zt91 + dz − 1))

 . (5.200)

C.1.2. Datasets that do not satisfy the graphical criterion. The transition mechanisms for the
action and temporal datasets of Figure 5.7 and Table 5.4 are (5.194) and (5.198), respectively, except
for the graphs which are different.
ActionBlockDiag and ActionBlockNonDiag (Figure 5.7). The left graph corresponds to Action-
BlockDiag while the right one corresponds to ActionBlockNonDiag.

Ga
(1) :=



1
1

1
1

1
1

1
1

1
1



Ga
(2) :=



1
1

1
1

1
1

1
1

1 1
1 1
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TimeBlockDiag and TimeBlockNonDiag (Figure 5.7). The left graph corresponds to TimeBlock-
Diag while the right one corresponds to TimeBlockNonDiag.

Gz
(1) :=



1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1



Gz
(2) :=



1 1 1 1
1 1 1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1 1 1 1 1
1 1 1 1 1 1


ActionRandomGraphs and TimeRandomGraphs (Table 5.4). The transition mechanisms are the
same as in the ActionNonDiag and TimeNonDiag datasets, i.e. they are given by (5.194) & (5.198),
respectively. However, the graphs are sampled randomly, with various levels of sparsity. For the Ac-
tionRandomGraphs dataset, we haveGa

i,j ∼ Ber(p) and independent. For the TimeRandomGraphs
datasets, it is the same except for the diagonal elements, which are forced to be active, i.e. Gz

i,i = 1.

C.2. Implementation details of our regularized VAE approach

All details of our implementation matches those of Lachapelle et al. [2022] (except for the
constrained optimization which was introduced in Section 5.5).

Learned mechanisms. Every coordinate zi of the latent vector has its own mechanism p̂(zt
i |

z<t,a<t) that is Gaussian with mean outputted by µ̂i(zt−1,at−1) (a multilayer perceptron with
5 layers of 512 units) and a learned variance which does not depend on the previous time steps.
For learning, we use the typical parameterization of the Gaussian distribution with µ and σ2 and
not its exponential family parameterization. Throughout, the dimensionality of zt in the learned
model always match the dimensionality of the ground-truth (same for baselines). Learning the
dimensionality of zt is left for future work.

Prior of z1 in time-sparsity experiments. In time-sparsity experiments, the prior of the first
latent p̂(z1) (when t = 1) is modelled separately as a Gaussian with learned mean and learned
diagonal covariance. Note that this learned covariance at time t = 1 is different from the subsequent
learned conditional covariance at time t > 1.

Encoder/Decoder. In all experiments, including baselines, both the encoder and the decoder is
modelled by a neural network with 6 fully connected hidden layers of 512 units with LeakyReLU
activation with negative slope 0.2. For all VAE-based methods, the encoder outputs the mean and
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a diagonal covariance. Moreover, p(x|z) has a learned isotropic covariance σ2I . Note that σ2I

corresponds to the covariance of the independent noise nt in the equation xt = f(zt) + nt.

C.3. Baselines

In synthetic experiments of Sec. 5.8, all methods used a minibatch size of 1024 and the same
encoder and decoder architecture: A MLP with 6 layers of 512 units with LeakyReLU activations
(negative slope of 0.2). We tuned manually the learning rate of each method to ensure proper
convergence. For VAE-based methods, i.e. TCVAE, SlowVAE and iVAE, we are always choosing
p(x|z) Gaussian with a covariance σ2I and learn σ2.

β-TCVAE. We used the implementation provided in the original paper by Chen et al. [2018]
which is available at https://github.com/rtqichen/beta-tcvae. We used a learning
rate of 1e-4.

iVAE. We used the implementation available at https://github.com/ilkhem/

icebeem from Khemakhem et al. [2020a]. In it, the mean of the prior p(z|a) is fixed to zero while
its diagonal covariance is allowed to depend on a through an MLP. We change this to allow the
mean to also depend on a through the neural network (with 5 layers and width 512). We also lower
bounded its variance as well as the variance of q(z | x, a) to improve the stability of learning. In
the original implementation, the covariance of p(x|z) was not learned. We found that learning it
(analogously to what we do in our method) improved performance. We used a learning rate of 1e-4.

SlowVAE. We used the implementation provided in https://github.com/bethgelab/
slow_disentanglement [Klindt et al., 2021]. Like for other VAE-based methods, we mod-
elled p(x|z) as a Gaussian with covariance σ2I and learned σ2.

PCL. We used the implementation provided here: https://github.com/bethgelab/
slow_disentanglement/tree/baselines. PCL [Hyvarinen and Morioka, 2017] stands
for “permutation contrastive learning” and works as follows: Given sequential data {xt}T

t=1, PCL
trains a regression function r((x′, x)) to discriminate between pairs of adjacent observations (positive
pairs) and randomly matched pairs (negative pairs). The regression function has the form

r((x, x′)) =
dz∑

i=1

Bi(hi(x), hi(x′)) , (5.201)

where h : Rdx → Rdz is the encoder and Bi : R2 → R are learned functions. In our implementation,
the Bi functions are fully connected neural networks with 5 layers and 512 hidden units. We
experimented with the less expressive function suggested in the original work, but found that the
extra capacity improved performance across all datasets we considered.
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Figure 5.9. Investigating the link between goodness of fit (ELBO), disentanglement (MCC) and
UDR. The ELBO is normalized so that it remains between 0 and 1.

C.4. Unsupervised hyperparameter selection

In practice, one cannot measure MCC since the ground-truth latent variables are not observed.
Unlike in standard machine learning setting, hyperparameter selection for disentanglement cannot be
performed simply by evaluating goodness of fit on a validation set and selecting the highest scoring
model since there is usually a trade-off between goodness of fit and disentanglement [Locatello
et al., 2019, Sec. 5.4]. To circumvent this problem, Duan et al. [2020] introduced unsupervised

disentanglement ranking (UDR) which, for every hyperparameter combinations, measures how
consistent are different random intializations of the algorithm. The authors argue that hyperpa-
rameters yielding disentangled representation typically yields consistent representations. In our
experiments, the consistency of a given hyperparameter combination is measured as follows: for
every pair of models, we compute the MCC between their representations. Then, we report the
median of all pairwise MCC. This gives a UDR score for every hyperparameter values considered.
Figure 5.9 reports the ELBO (normalized between zero and one), the MCC and the UDR score for
the experiments of Figure 5.5. We can visualize the trade-off between ELBO and MCC. That being
said, MCC and UDR correlates nicely except for the TimeNonDiag dataset, in which this correlation
breaks for stronger regularization. We noticed that these specific runs correspond to excessively
sparse graph, with fewer than 10 edges (out of 100 possible edges). The black star indicates the
hyperparameter selected by UDR when excluding coefficient values which yields graphs with less
than 10 edges (on average).

Baselines. Two of the baselines considered had hyperparameters to tune, SlowVAE [Klindt et al.,
2021] and TCVAE [Chen et al., 2018]. For SlowVAE, we did a grid search on the following values,
γ ∈ {1.0, 2.0, 4.0, 8.0, 16.0} and α ∈ {1, 3, 6, 10}. For TCVAE, we explored β ∈ {1, 2, 3, 4, 5} but
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the optimal value in terms of disentanglement was almost always 1. Values of β larger than 5 led to
instabilities during training. The hyperparameters were selected using UDR, as described in the
paragraph above.

D. Miscellaneous

D.1. On the invertibility of the mixing function

Throughout this work as well as many others [Hyvarinen and Morioka, 2016, 2017, Hyvärinen
et al., 2019, Khemakhem et al., 2020a, Locatello et al., 2020a, Klindt et al., 2021], it is assumed
that the mixing function mapping the latent factors to the observation is a diffeomorphism onto its
image. In this section, we briefly discuss the practical implications of this assumption.

Recall that a diffeomorphism is a differentiable bijective function with a differentiable inverse.
We start by adressing the bijective part of the assumption. To understand it, we consider a plausible
situation where the mapping f is not invertible. Consider the minimal example of Fig. 5.1 consisting
of a tree, a robot and a ball. Assume that the ball can be hidden behind either the tree or the robot.
Then, the mixing function f is not invertible because, given only the image, it is impossible to know
whether the ball is behind the tree or the robot. Thus, this situation is not covered by our theory.
Intuitvely, one could infer, at least approximately, where the ball is hidden based on previous time
frames. Allowing for this form of occlusion is left as future work. See also Mansouri et al. [2022]
for further discussion about how one can relax this assumption.

We believe the differentiable part of this assumption is only a technicality that could probably
be relaxed to being piecewise differentiable. Our experiments were performed with data generated
with a piecewise linear f , which in not differentiable only on a set of (Lebesgue) measure zero, but
this was not an issue in practice.

D.2. Contrasting with the assumptions of Khemakhem et al. [2020a] & Yao
et al. [2022b]

In this section, we discuss two identifiability results previously proposed in the literature that do
not leverage sparsity [Khemakhem et al., 2020a, Yao et al., 2022a]. We show that these results do
not apply to the simple homoscedastic Gaussian latent models of the form p(zt

i | zt−1) = N (zt
i |

µi(zt−1), σ2
i ), contrarily to our theory, as we saw in Examples 5.8, 5.9 and 5.11. We will see that in

the context of a Gaussian latent model, both results require the variance to vary sufficiently strongly.
We believe that such a requirement is not well suited for nearly deterministic environments such as
the one depicted in Figure 5.1.
Khemakhem et al. [2020a]. The most significant distinction between the theory of Khemakhem
et al. [2020a] (iVAE) and ours is how identifiability up to permutation is obtained: Theorems 2 & 3
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from iVAE shows that if the assumptions of their Theorem 1 (which is essentially Theorem 5.4) are
satisfied and si has dimension k > 1 or is non-monotonic, then the model is not just identifiable
up to linear transformation but up to permutations (and rescalings). In contrast, our theory covers
the case where k = 1 and si is monotonic, like in the homoscedastic Gaussian case. Interestingly,
Khemakhem et al. [2020a] mentioned this specific case as a counterexample to their theory in their
Proposition 3. The extra power of our theory comes from the extra structure in the dependencies of
the latent factors coupled with sparsity regularization. We note that, assuming the latent factors are
Gaussian, the variability assumption of Theorem 5.4 combined with k > 1 requires the variance to
vary sufficiently, which is implausible in the nearly deterministic environment of Figure 5.1.
Yao et al. [2022a]. This work (Theorem 1) requires that, for each value of zt, the 2dz functions

∂2

∂zt
i∂z

t−1 log p(zt
i | zt−1) and

∂3

(∂zt
i)2∂zt−1 log p(zt

i | zt−1) for i = 1 . . . dz ,

seen as functions from Rdz to Rdz are linearly independent. Indeed, if p(zt
i | zt−1) = N (zt

i |
µi(zt−1), σ2

i ), one can easily derive that

∂

∂zt
i

log p(zt
i | zt−1

i ) = −(zi − µi(zt−1))/σ2
i (5.202)

∂2

(∂zt
i)2 log p(zt

i | zt−1
i ) = −1/σ2

i (5.203)

∂2

(∂zt
i)2∂zt−1 log p(zt

i | zt−1
i ) = 0 , (5.204)

which shows that the assumption of Yao et al. [2022a, Theorem 1] does not hold for homoscedastic
Gaussian latent models. We further notice that, had the variance σ2

i depend on zt−1, the identifiability
result of Yao et al. [2022b] could have applied.

D.3. Derivation of the ELBO

In this section, we derive the evidence lower bound presented in Sec. 5.5.

log p(x≤T | a<T ) = (5.205)

Eq(z≤T |x≤T ,a<T )

[
log q(z

≤T | x≤T ,a<T )
p(z≤T | x≤T ,a<T ) (5.206)

+ log p(z
≤T ,x≤T | a<T )

q(z≤T | x≤T ,a<T )

]
(5.207)

≥ Eq(z≤T |x≤T ,a<T )

[
log p(z

≤T ,x≤T | a<T )
q(z≤T | x≤T ,a<T )

]
(5.208)

= Eq(z≤T |x≤T ,a<T )
[
log p(x≤T | z≤T ,a<T )

]
(5.209)

−KL(q(z≤T | x≤T ,a<T )||p(z≤T | a<T )) (5.210)
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where the inequality holds because the term at (5.206) is a Kullback-Leibler divergence, which is
greater or equal to 0. Notice that

p(x≤T | z≤T ,a<T ) = p(x≤T | z≤T ) =
T∏

t=1

p(xt | zt) . (5.211)

Recall that we are considering a variational posterior of the following form:

q(z≤T | x≤T ,a<T ) :=
T∏

t=1

q(zt | xt) . (5.212)

Equations (5.211) & (5.212) allow us to rewrite the term in (5.209) as

T∑
t=1

E
zt∼q(·|xt)

[log p(xt | zt)] (5.213)

Notice further that

p(z≤T | a<T ) =
T∏

t=1

p(zt | z<t,a<t) . (5.214)

Using (5.212) & (5.214), the KL term (5.210) can be broken down as a sum of KL as:

T∑
t=1

E
z<t∼q(·|x<t)

KL(q(zt | xt)||p(zt | z<t,a<t)) (5.215)

Putting all together yields the desired ELBO:

log p(x≤T |a<T ) ≥
T∑

t=1
E

zt∼q(·|xt)
[log p(xt | zt)] (5.216)

− E
z<t∼q(·|x<t)

KL(q(zt | xt)||p(zt | z<t,a<t)) .
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Prologue to the Fourth Contribution

Article Details
Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-
Task Learning
by Sébastien Lachapelle*, Tristan Deleu*, Divyat Mahajan, Ioannis Mitliagkas, Yoshua Bengio,

Simon Lacoste-Julien and Quentin Bertrand. This work was published at the 40th International
Conference on Machine Learning (ICML 2023).
∗Equal contributions.

Contributions of the Authors
Sébastien Lachapelle developed the ideas and proofs for how sparse multi-task learning

can yield disentanglement as well as how disentangled representations combined with sparsity
regularization can improve generalization. He also contributed to the writing and led the disentan-
glement experiments. Tristan Deleu developed the code based in JAX guided by his experience
in meta-learning, contributed to the implementation of the non-smooth bilevel optimization, led
the experiments on miniImageNet and contributed to the writing. Divyat Mahajan led the general-
ization experiments. Simon Lacoste-Julien provided supervision, contributed to the writing and
provided guidance for the theory. Quentin Bertrand supervised the project, brought his expertise
on non-smooth bilevel optimization to the project, led the implementation of the non-smooth bilevel
optimization, derived and implemented the dual of the group Lasso penalized multiclass SVM used
in the miniImageNet and generally helped with the writing and experiments.

Context and Limitations
Bengio et al. [2013, Section 3.5] explain the difference between the goal of learning an invariant

representation, which is about what information is captured by the representation, and that of
learning a disentangled representation, which is about how the information is represented. The



authors further argue that disentanglement is crucial since the learner does not know which features
will be important for a given task ahead of time:

It is important to distinguish between the related but distinct goals of learning

invariant features and learning to disentangle explanatory factors. The central

difference is the preservation of information. Invariant features, by definition, have

reduced sensitivity in the direction of invariance. This is the goal of building features

that are insensitive to variation in the data that are uninformative to the task at hand.

Unfortunately, it is often difficult to determine a priori which set of features and

variations will ultimately be relevant to the task at hand. Further, as is often the case

in the context of deep learning methods, the feature set being trained may be destined

to be used in multiple tasks that may have distinct subsets of relevant features.

Considerations such as these lead us to the conclusion that the most robust approach

to feature learning is to disentangle as many factors as possible, discarding as little

information about the data as is practical. — Bengio et al. [2013, Section 3.5]
However, the precise mechanism by which a disentangled representation leads to more robust-

ness is left rather open. It is implied that disentanglement should allow the learner to choose the right
features for the task it is confronted to in a way that would not be possible had the representation
been entangled. But how exactly? And is disentanglement necessary to achieve this? Answering
these questions is important, especially given the fact that empirical works investigating whether
disentanglement improves downstream performance reach conflicting conclusions (see Section 6.4).

The following contribution proposes the first theoretical principle explaining how disentangled
representations have an advantage over entangled ones in a few-shot setting when the features that
“will ultimately be relevant to the task at hand” are unknown in advance. The key assumption is
that, when using a disentangled representation, all possible future tasks can be solved using a sparse
predictor9, i.e. one which depends only on a small subset of features. Under this assumption, it
is clear that fitting a predictor with sparse regularization on top of a representation will improve
sample complexity (sparsity regularization reduces the hypothesis class) without introducing any
bias given that the representation used is disentangled. Indeed, if the representation is entangled,
the optimal predictor for the task and that representation will not be sparse, which means sparsity
regularization will induce bias. We emphasize that this conclusion holds even when the entangled
representation contains exactly the same information as the disentangled one, which makes clear
that the magic happens because of how the information is encoded and not what information is
encoded. In some sense, we want to “align” the representation learned (disentanglement) with the
inductive bias of the predictor (sparsity) to learn with fewer samples in an unbiased way when
confronted to a diverse set of tasks. Although this argument is formalized in Section 6.2, note that
9The analysis is carried out with linear predictors, but could be extended to general nonlinear predictors, as long as they
only use a sparse subset of features to predict.
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we do not quantify the gains in sample complexity (with generalization bounds) arising from having
a disentangled representation combined with sparsity regularization and left this for future work.

We further propose a novel identifiability result based on sparse multi-task learning, which adds
to the now growing literature on identifiable representation learning (see Sections 5.7 & 6.4 for
reviews). The proposed result has some nice properties such as allowing for dependent factors
zi, for a non-invertible relationship between the observations x and factors z as well as making
next to no assumptions on p(x) (see next paragraph). However, the methodology also suffers from
some limitations. For instance, the result assumes we observe an uncountably infinite number of
tasks in order to prove disentanglement, which adds on top of the usual “infinite data" assumptions
found in identifiability analyses. Although this assumption appears difficult to get rid of, there
might be ways to avoid it. For instance, there is a body of literature showing identifiability of sparse
dictionary learning up to permutation and rescaling in the finite-sample regime [Georgiev et al.,
2005, Aharon et al., 2006, Hu and Huang, 2023]. These results could form a basis to move to
finite-sample identifiability analyses in the nonlinear case.

Discriminative v.s. generative assumptions. Interestingly, the identifiability result of this contri-
bution makes assumptions only about p(y | x,w), wherew is a task-specific parameter, and none
about p(x). This is in stark contrast with the results of Chapters 5 & 7 which imposes restrictions
on p(x). Avoiding making assumptions about p(x) is a good thing, since coming up with a good
model for the distribution of images p(x) is difficult.

Recent developments
Briefly after the publication of our work, Fumero et al. [2023] introduced a very similar approach

with the key difference being that they add an additional regularization to encourage sharing features
across tasks, to prevent duplication of features. This additional regularizer appears to be especially
important when the number of latent factors is unknown, as is the case in practice. The authors
also show empirically that, on more realistic domain generalization tasks such as PACS [Li et al.,
2017], VLCS [Fang et al., 2013], OfficeHome [Venkateswara et al., 2017] and Waterbirds [Sagawa
et al., 2020], this sparse multitask learning approach can learn features that allow for better few-
shot performance than features learn via ERM. Interestingly, to achieve these results, they apply
a sparsity penalty when fitting the linear head, which corroborates our own theoretical analysis
on how disentangled representations combined with sparsity regularization can improve sample
complexity.

The proof strategy we developed has been reused by Bing et al. [2023] to show causal represen-
tation learning is possible with multi-target interventions with linear mixing and by Xu et al. [2023]
to show identifiability with sparse latent factors.
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Chapter 6

Synergies Between Disentanglement and Sparsity:
Generalization and Identifiability in Multi-Task

Learning

Abstract
Although disentangled representations are often said to be beneficial for downstream tasks,

current empirical and theoretical understanding is limited. In this work, we provide evidence that
disentangled representations coupled with sparse task-specific predictors improve generalization.
In the context of multi-task learning, we prove a new identifiability result that provides conditions
under which maximally sparse predictors yield disentangled representations. Motivated by this
theoretical result, we propose a practical approach to learn disentangled representations based on a
sparsity-promoting bi-level optimization problem. Finally, we explore a meta-learning version of
this algorithm based on group Lasso multiclass SVM predictors, for which we derive a tractable
dual formulation. It obtains competitive results on standard few-shot classification benchmarks,
while each task is using only a fraction of the learned representations.

6.1. Introduction
The recent literature on self-supervised learning has provided evidence that learning a represen-

tation on large corpuses of data can yield strong performances on a wide variety of downstream
tasks [Devlin et al., 2018, Chen et al., 2020], especially in few-shot learning scenarios where the
training data for these tasks is limited [Brown et al., 2020, Dosovitskiy et al., 2021b, Radford
et al., 2021]. Beyond transferring across multiple tasks, these learned representations also lead
to improved robustness against distribution shifts [Wortsman et al., 2022] as well as stunning
text-conditioned image generation [Ramesh et al., 2022]. However, preliminary assessments of the



latter have highlighted shortcomings related to compositionality [Marcus et al., 2022], suggesting
new algorithmic innovations are needed.

Another line of work has argued for the integration of ideas from causality to make progress
towards more robust and transferable machine learning systems [Pearl, 2019, Schölkopf, 2019,
Goyal and Bengio, 2021]. Causal representation learning has emerged recently as a field aiming
to define and learn representations suited for causal reasoning [Schölkopf et al., 2021]. This
set of ideas is strongly related to learning disentangled representations [Bengio et al., 2013].
Informally, a representation is considered disentangled when its components are in one-to-one
correspondence with natural and interpretable factors of variations, such as object positions, colors
or shapes. Although a plethora of works have investigated theoretically under which conditions
disentanglement is possible through the lens of identifiability [Hyvarinen and Morioka, 2016, 2017,
Hyvärinen et al., 2019, Khemakhem et al., 2020a, Locatello et al., 2020a, Klindt et al., 2021,
Von Kügelgen et al., 2021, Gresele et al., 2021, Lachapelle et al., 2022, Lippe et al., 2022, Ahuja
et al., 2022c], fewer works have tackled how a disentangled representation could be beneficial for

downstream tasks. Those who did mainly provide empirical rather than theoretical evidence for or
against its usefulness [Locatello et al., 2019, van Steenkiste et al., 2019, Miladinović et al., 2019,
Dittadi et al., 2021, Montero et al., 2021]. We believe our work can bring some theoretical insights
as to when and why disentanglement can help.

In this work, we explore synergies between disentanglement and sparse task-specific predictors
in the context of multi-task learning. At the heart of our contributions is the assumption that only a
small subset of all factors of variations are useful for each downstream task, and this subset might
change from one task to another. We will refer to such tasks as sparse tasks, and their corresponding
sets of useful factors as their supports. This assumption was initially suggested by Bengio et al.
[2013, Section 3.5]: “the feature set being trained may be destined to be used in multiple tasks that
may have distinct [and unknown] subsets of relevant features. Considerations such as these lead
us to the conclusion that the most robust approach to feature learning is to disentangle as many
factors as possible, discarding as little information about the data as is practical”. This strategy is in
line with the current self-supervised learning trend [Radford et al., 2021], except for its focus on
disentanglement.

6.1.1. Contributions

(1) We formalize this “sparse task assumption” and argue theoretically and empirically how,
when it holds, a disentangled representation coupled with a sparsity-regularized task-specific
predictor can generalize better than their entangled counterparts (Section 6.2).

(2) We introduce a novel identifiability result (Theorem 6.1) which shows how one can leverage
multiple sparse supervised tasks to learn a shared disentangled representation by regularizing
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the task-specific predictors to be maximally sparse (Section 6.3.2). We note that the usage
of supervision is in line with many recent results which leverages more or less weak forms
of supervision to guarantee identifiability. Contrary to many existing identifiability results,
ours allows for statistically dependent latent factors and a non-invertible map between
observations and latents.

(3) Motivated by this result, we propose a tractable bi-level optimization (Problem (6.6)) to
learn the shared representation while regularizing the task-specific predictors to be sparse
(Section 6.3.4). We validate our theory by showing our approach can indeed disentangle
latent factors on tasks constructed from the 3D Shapes dataset [Burgess and Kim, 2018].

(4) Finally, we draw a connection between this bi-level optimization problem and formulations
from the meta-learning literature. Inspired by our identifiability result, we enhance an
existing method [Lee et al., 2019], where the task-specific predictors are now group-sparse
SVMs. We show that this new meta-learning algorithm achieves competitive performance
on the miniImageNet benchmark [Vinyals et al., 2016], while only using a fraction of the
representation.

We emphasize that, although related, the theoretical contributions of Sections 6.2 & 6.3 are
distinct and stand of their own. Indeed, Section 6.2 shows how disentangled representations
combined with sparsity regularization can improve generalization, while Section 6.3 shows how
regularizing task-specific predictors to be sparse can induce disentanglement in a multi-task learning
setting.

6.1.2. Background

We start by introducing formally the notion of entangled and disentangled representations.
First, we assume the existence of some ground-truth encoder function fθ : Rd → Rm that

maps observations x ∈ X ⊆ Rd, e.g., images, to its corresponding interpretable and usually
lower dimensional representation fθ(x) ∈ Rm, m ≤ d. The exact form of this ground-truth
encoder depends on the task at hand, but also on what the machine learning practitioner considers
as interpretable. The learned encoder function is denoted by fθ̂ : Rd → Rm, and should not be
conflated with the ground-truth representation fθ. For example, fθ̂ can be parametrized by a neural
network. Throughout, we are going to use the following definition of disentanglement.

Definition 6.1 (Disentangled Representation, Khemakhem et al. 2020a, Lachapelle et al. 2022).
A learned encoder function fθ̂ : Rd → Rm is said to be disentangled w.r.t. the ground-truth
representation fθ when there exists an invertible diagonal matrixD and a permutation matrix P

such that, for all x ∈ X , fθ̂(x) = DPfθ(x).
Intuitively, a representation is disentangled when there is a one-to-one correspondence between

its components and those of the ground-truth representation, up to rescaling. When an encoder fθ̂ is
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not disentangled, we say it is entangled. Note that there exist less stringent notions of disentangle-
ment which allow for component-wise nonlinear invertible transformations of the factors [Hyvarinen
and Morioka, 2017, Hyvärinen et al., 2019].

Notation. Capital bold letters denote matrices and lowercase bold letters denote vectors. The
set of integers from 1 to n is denoted by [n]. We write ∥·∥ for the Euclidean norm on vectors
and the Frobenius norm on matrices. For a matrix A ∈ Rk×m, ∥A∥2,1 =

∑m
j=1 ∥A:j∥, and

∥A∥2,0 =
∑m

j=1 1∥A:j∦=0, where 1 is the indicator function. The ground-truth parameter of the
encoder function is θ, while that of the learned representation is θ̂. We follow this convention for
all the parameters throughout. Table 6.1 in Appendix A summarizes all the notation.

6.2. Disentanglement and Sparse Task-Specific Predictors Im-
prove Generalization

In this section, we show that for any linearly equivalent representation (entangled or dis-
entangled), the maximum likelihood estimator defined in Problem (6.1) yields the same model
(Proposition 6.1). However, we also show that disentangled representations have better general-
ization properties when the task-specific predictor is regularized to be sparse. (Proposition 6.2 &
Figure 6.1). Our analysis is centred around the following assumption.

Assumption 6.1 (Linear equivalence). The learned encoder fθ̂ is linearly equivalent to the ground-

truth encoder fθ, i.e., there exists an invertible matrix L such that, for all x ∈ X , fθ̂(x) = Lfθ(x).

Note that similar notions of linear equivalence were used e.g. by Hyvärinen et al. [2019],
Khemakhem et al. [2020a], Roeder et al. [2021]

Despite being assumed linearly equivalent, the learned representation fθ̂ might not be disen-
tangled (Definition 6.1); in that case, we say the representation is linearly entangled. When we
refer to a disentangled representation, we write L := DP . Roeder et al. [2021] have shown that
many common methods learn representations identifiable up to linear equivalence, such as deep
neural networks for classification, contrastive learning [Oord et al., 2018, Radford et al., 2021] and
autoregressive language models [Mikolov et al., 2010, Brown et al., 2020].

6.2.1. MLE invariance to linear feature transformations

Consider the following maximum likelihood estimator (MLE):1

Ŵ (θ̂)
n := arg max

W̃

∑
(x,y)∈D

log p(y;η = W̃fθ̂(x)) , (6.1)

1We assume the solution is unique.
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where y denotes the label, D := {(x(i), y(i))}n
i=1 is the dataset, p(y;η) is a distribution over labels2

parameterized by η ∈ Rk, and Ŵ ∈ Rk×m is the task-specific predictor. The following result
shows that the model estimated via maximum likelihood defined in Problem (6.1) is invariant to
invertible linear transformations of the features. Note that it is an almost direct consequence of the
invariance of MLE to reparametrization [Casella and Berger, 2001, Thm. 7.2.10]. See Appendix A
for a proof.

Proposition 6.1. Let Ŵ (θ̂)
n and Ŵ (θ)

n be the solutions to Problem (6.1) with the representations

fθ̂ and fθ, respectively (which we assume are unique). If fθ̂ and fθ are linearly equivalent

(Assumption 6.1), then we have, ∀x ∈ X , Ŵ (θ̂)
n fθ̂(x) = Ŵ

(θ)
n fθ(x).

Proposition 6.1 shows that the model p(y; Ŵ (θ̂)
n fθ̂(x)) learned by Problem (6.1) is independent

of L, i.e., the learned model is the same for disentangled and linearly entangled representations.
We thus expect both disentangled and linearly entangled representations to perform identically on
downstream tasks.

6.2.2. An advantage of disentangled representations

We are now going to see how adding sparsity regularization to Problem (6.1) favors the disen-
tangled representation when the ground-truth data generating process is truly sparse.

Assumption 6.2 (Data generation process). The input-label pairs are i.i.d. samples from the

distribution p(x, y) := p(y;Wfθ(x))p(x), where W ∈ Rk×m is the ground-truth coefficient

matrix such that ∥W ∥2,0 = ℓ.

To formalize the hypothesis that only a subset of the features fθ(x) are actually useful to

predict the target y, we assume that the ground-truth coefficient matrix W is column sparse,
i.e., ∥Ŵ ∥2,0 = ℓ < m. Under this assumption, it is natural to constrain the MLE as such:

Ŵ (θ̂,ℓ)
n := arg max

∥W̃ ∥2,0≤ℓ

∑
(x,y)∈D

log p(y; W̃fθ̂(x)) . (6.2)

To analyze the impact of this additional constraint on the generalization error, we consider both the
estimation error (a.k.a. variance) and the approximation error (a.k.a. bias) separately [Mohri et al.,
2018, Chapter 4].

Estimation error. The sparsity constraint of Problem (6.2) decreases the size of the hypothesis
class considered to minimize the negative log-likelihood and should thus yield a decrease in
estimation error for both entangled and disentangled representations (i.e., reduce overfitting).
Sparsity regularization is a well-understood approach to control the complexity of a predictor, see
for example Bickel et al. [2009], Lounici et al. [2011a], Mohri et al. [2018].

2p(y;η) could be a Gaussian density (regression) or a categorical distribution (classification).
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Approximation error. Disentangled and entangled representations differ in how the sparsity
constraint of Problem (6.2) impacts their approximation errors. The following proposition will help
us see how this regularization favors disentangled representations over entangled ones.

Proposition 6.2. Let Ŵ (θ̂)
∞ be the (assumed unique) solution of the population-based MLE,

arg maxW̃ Ep(x,y) log p(y; W̃fθ̂(x)). If Assumption 6.1 (linear equivalence) & Assumption 6.2

(data generating process) hold, Ŵ (θ̂)
∞ = WL−1.

From Proposition 6.2, one can see that if the representation fθ̂ is disentangled (L = DP ), then

∥Ŵ (θ̂)
∞ ∥2,0 = ∥W (DP )−1∥2,0 = ∥W ∥2,0 = ℓ .

Thus, the sparsity constraint in Problem (6.2) does not exclude the population MLE estimator from
its hypothesis class which means no approximation error is entailed (no bias). Contrarily, when fθ̂
is linearly entangled, the population MLE might have more nonzero columns than the ground-truth
(since L−1 might destroy the sparsity ofW ), and thus would be excluded from the hypothesis space
of Problem (6.2), which means an approximation error is introduced.

Conclusion. The above points suggest that if the ground-truth task is sufficiently sparse, the

disentangled representation should benefit from sparsity regularization (assuming the number

of samples is low) because it reduces the estimation error (variance) without increasing the

approximation error (bias). In contrast, an entangled representation might not benefit from sparsity
regularization if the increase in approximation error is more important than the reduction in
estimation error.

Empirical validation (Figure 6.1). We now present a simple simulated experiment that
illustrates the above claim that disentangled representations coupled with sparsity regularization

can yield better generalization. Figure 6.1 compares the generalization performances of L1 and
L2-penalized linear regressions [Tibshirani, 1996, Hoerl and Kennard, 1970], computed on the top
of both disentangled and linearly entangled representations, which are frozen during training. L1-
penalized linear regression coupled with the disentangled representation yields better generalization
than other alternatives when ℓ/m = 5% and when the number of samples is very small. One can
also see that disentanglement, sparsity regularization, and sufficient sparsity in the ground-truth
data generating process are necessary for significant improvements, in line with our discussion.
Lastly, all methods yield similar performance when the number of samples grows. More details and
discussions can be found in Appendix D.1.

6.3. Sparse Multi-Task Learning for Disentanglement
In Section 6.2, we argued that disentangled representations can improve generalization when

combined with sparse task-specific predictors, but we did not mention how to obtain a disentan-
gled representation in the first place. In this section, we first provide a new identification result
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Figure 6.1. Test performance for the entangled and disentangled representation using Lasso and
Ridge regression. All the results are averaged over 10 seeds, with standard error shown in error bars.

(Theorem 6.1, Section 6.3.2), which states that in the multi-task learning setting, regularizing the
task-specific predictors to be sparse can yield disentangled representations. Then, in Section 6.3.4,
we provide a practical way to learn disentangled representations motivated by our identifiability
result.

6.3.1. Task & data generating process

Throughout this section, we assume the learner is given a set of T datasets {D1, . . . ,DT} where
each dataset Dt := {(x(t,i), y(t,i))}n

i=1 consists of n couples of input x ∈ Rd and label y ∈ Y . The
set of labels Y might contain either class indices or real values, depending on whether we are
concerned with classification or regression tasks.

Our theory relies on the assumption that, for each task t, the dataset Dt is made of i.i.d. samples
from the distribution

p(x, y |W (t)) := p(y;W (t)fθ(x))p(x |W (t)) , (6.3)

where W (t) ∈ Rk×m is the task-specific ground-truth coefficient matrix. We emphasize that the
representation fθ is shared across all the tasks while the coefficient matricesW (t) are task-specific.
Also note that the distribution over x is allowed to change from one task to another. However, we
assume that its support, X , is fixed across tasks.

We further assume that the task-specific matricesW (t) are i.i.d. samples from some probability
measure PW with supportW . We will see in Section 6.3.3 that the most critical assumptions of our
theory concern PW .

6.3.2. Main identifiability result

We are now ready to show the main theoretical result of this work, which provides a bi-level
optimization problem for which the optimal representations are guaranteed to be disentangled. It
assumes infinitely many tasks are observed, with task-specific ground-truth matricesW sampled
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from PW . We denote by Ŵ (W ) the task-specific estimator ofW . We delay the presentation of its
technical assumptions to Section 6.3.3. See Appendix B.2 for a proof.

Theorem 6.1 (Sparse multi-task learning for disentanglement). Let θ̂ be a minimizer of

min
θ̂

EPW
Ep(x,y|W ) − log p(y; Ŵ (W )fθ̂(x)) (6.4)

s.t. Ŵ (W ) ∈ arg min
W̃ s.t.

||W̃ ||2,0≤||W ||2,0

Ep(x,y|W ) − log p(y; W̃fθ̂(x)) ,

where the constraint holds for all W ∈ W and where PW and p(x, y | W ) are described in

Section 6.3.1. Under Assumptions 6.3, 6.4, 6.5, 6.6, 6.7 and if fθ̃ is continuous for all θ̃, fθ̂ is

disentangled w.r.t. fθ (Definition 6.1).

Intuitively, this optimization problem effectively selects a representation fθ̂ that (i) allows a
perfect fit of the data distribution, and (ii) allows the task-specific estimators Ŵ (W ) to be as sparse
as the ground-truthW . The theorem guarantees that such a representation must be disentangled.

Under the same assumptions and with the same disentanglement guarantees, Theorem 6.4
in Appendix B presents a variation of Problem (6.4) which enforces the weaker constraint
EPW
∥Ŵ (W )∥2,0 ≤ EPW

∥W ∥2,0, instead of ∥Ŵ (W )∥2,0 ≤ ∥W ∥2,0 for each task W individu-
ally.

Characteristic features of our theory. (i) Contrary to most identifiability results for disen-
tanglement (Section 6.4), we do not assume the observations x are generated by transforming
a latent random vector z through a bijective decoder g. Instead, we assume the existence of a
not necessarily invertible ground-truth feature extractor fθ(x) from which the labels can be
predicted using only a subset of its components in every task. (ii) Most previous works make
assumptions about the distribution of latent factors, e.g., (conditional) independence, exponential
family or other parametric assumptions. In contrast, we make no such assumption except a rather
weak assumption on the support of the ground-truth features (Assumption 6.4). Crucially, this
allows for statistically dependent latent factors, which we explore empirically in Section 6.5.1.

6.3.3. Assumptions of Theorem 6.1

We now present the technical assumptions of Theorem 6.1. Perhaps unsurprisingly, the parame-
ters η have to be identifiable from p(y;η) in order for fθ to be identifiable.

Assumption 6.3 (Identifiability of η from p(y;η)). KL(p(y;η) || p(y; η̃)) = 0 =⇒ η = η̃,

where KL denotes the Kullback-Leibler divergence.

This property holds, e.g., when p(y;η) is a Gaussian in the usual µ, σ2 parameterization.
Generally, it also holds for minimal parameterizations of exponential families [Wainwright and
Jordan, 2008].
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Figure 6.2. Illustration of Assumption 6.6 showing three examples of distribution PW |S . The red
distribution satisfies the assumption, but the blue and orange distributions do not. The red lines are
level sets of a Gaussian distribution with full rank covariance. The blue line represents the support
of a Gaussian distribution with a low-rank covariance. The orange dots represent a distribution with
finite support. The green vector a shows that the condition is violated for both the blue and the
orange distribution, since, in both cases,W1,S and a are orthogonal (W1,Sa = 0) with probability
greater than zero.

The following assumption requires the ground-truth representation fθ(x) to vary enough such
that its image cannot be trapped inside a proper subspace.

Assumption 6.4 (Sufficient representation variability). There exists x(1), . . . ,x(m) ∈ X such that

the matrix F := [fθ(x(1)), . . . ,fθ(x(m))] is invertible.

The following assumption requires that the support of the distribution PW is sufficiently rich.

Assumption 6.5 (Sufficient task variability). There exists W (1), . . . ,W (m) ∈ W and indices

i1, . . . , im ∈ [k] such that the rowsW (1)
i1,: , . . . ,W

(m)
im,: are linearly independent.

Under Assumptions 6.3, 6.4 and 6.5, the representation fθ is identifiable up to linear equivalence
(see Theorem 6.2 in Appendix B). Similar results were shown by Roeder et al. [2021], Ahuja et al.
[2022c]. The next assumptions will guarantee disentanglement.

In order to formalize the intuitive idea that most tasks do not require all features, we will denote
by S(t) the support of the matrixW (t), i.e.,

S(t) := {j ∈ [m] |W (t)
:j ̸= 0} .

In other words, S(t) is the set of features which are useful to predict y in the t-th task; note that it is
unknown to the learner. For our analysis, we decompose PW as

PW =
∑

S∈P([m])

p(S)PW |S , (6.5)

where P([m]) is the collection of all subsets of [m], p(S) is the probability that the support ofW is
S and PW |S is the conditional distribution ofW given that its support is S. Let S be the support of
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Figure 6.3. The leftmost figure represents S, the set of task supports observed under the ground-
truth distribution p(S). The other figures form a verification that Assumption 6.7 holds for S.

the distribution p(S), i.e., S := {S ∈ P([m]) | p(S) > 0}. The set S will have an important role in
Assumption 6.7.

The following assumption requires that PW |S does not concentrate mass on certain proper
subspaces.

Assumption 6.6 (Intra-support sufficient task variability). For all S ∈ S and all a ∈ R|S|\{0},

PW |S{W ∈ Rk×m |W:Sa = 0} = 0 .

We illustrate the above assumption in the simpler case where k = 1. For instance, Assump-
tion 6.6 holds when the distribution ofW1,S | S has a density w.r.t. the Lebesgue measure on R|S|,
which is true for example whenW1,S | S ∼ N (0,Σ) and the covariance matrix Σ is full rank (red
distribution in Figure 6.2). However, if Σ is not full rank, the probability distribution ofW1,S | S
concentrates its mass on a proper linear subspace V ⊊ R|S|, which violates Assumption 6.6 (blue
distribution in Figure 6.2). Another important counter-example is when PW |S concentrates some of
its mass on a point W (0), i.e., PW |S{W (0)} > 0 (orange distribution in Figure 6.2). We provide
a concrete numerical example of what can go wrong when the support of the PW |S is finite in
Appendix B.4. Interestingly, there are distributions overW1,S | S that do not have a density w.r.t.
the Lebesgue measure, but still satisfy Assumption 6.6. This is the case, e.g., when W1,S | S
puts uniform mass over a (|S| − 1)-dimensional sphere embedded in R|S| and centered at zero.
See Appendix B.6 for a justification.

The following assumption requires that the support S of p(S) is “rich enough”.

Assumption 6.7 (Sufficient variability of the task supports). For all j ∈ [m],⋃
S∈S|j ̸∈S

S = [m] \ {j} .

Intuitively, Assumption 6.7 requires that, for every feature j, one can find a set of tasks such
that their supports cover all features except j itself. Figure 6.3 shows an example of S satisfy-
ing Assumption 6.7. Appendix B.5 provides a probabilistic argument showing that Assumption 6.7
holds “in most cases” when the number of supports is very large. That being said, we conjecture
that removing this assumption would yield a form of partial disentanglement resembling the one
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developed by Lachapelle and Lacoste-Julien [2022] in which some groups of latent factors would
remain entangled.

6.3.4. Tractable bilevel optimization problems for sparse multitask learning

The proposed approach to jointly estimate the representation and the task-specific predictors
relies on a bilevel optimization problem (Problem (6.4)) that is intractable because of the non-
convex constraints. To obtain a tractable bi-level optimization problem, the L2,0 constraints are
replaced by their convex relaxations in the penalized form, which are also known to promote group
sparsity [Argyriou et al., 2008]:

min
θ̂
− 1
Tn

T∑
t=1

∑
(x,y)∈Dt

log p(y; Ŵ (t)fθ̂(x)) (6.6)

s.t. Ŵ (t) ∈ arg min
W̃

1
n

∑
(x,y)∈Dt

− log p(y; W̃fθ̂(x)) + λt||W̃ ||2,1 ,

where the constraint holds for all t ∈ [T ]. Following Bengio [2000], Pedregosa [2016], one can
compute the (hyper)gradient of the outer function using implicit differentiation, even if the inner
optimization problem is non-smooth [Bertrand et al., 2020, Bolte et al., 2021, Malézieux et al.,
2022, Bolte et al., 2022]. Once the hypergradient is computed, one can optimize Problem (6.6) with
usual first-order methods [Wright and Nocedal, 1999].

Note that the quantity Ŵ (t)fθ̂(x) is invariant to simultaneous rescaling of Ŵ (t) by a scalar and
of fθ̂(x) by its inverse. Thus, without constraints on fθ̂(x), ∥Ŵ (t)∥2,1 can be made arbitrarily small.
This issue is similar to the one faced in sparse dictionary learning [Kreutz-Delgado et al., 2003,
Mairal et al., 2008, 2009, 2011], where unit-norm constraints are usually imposed on dictionary
columns. In our case, since fθ̂ is parametrized by a neural network, we suggest applying batch or
layer normalization [Ioffe and Szegedy, 2015, Ba et al., 2016] to control the norm of fθ̂(x). Since
the number of relevant features might be task-dependent, Problem (6.6) has one regularization
hyperparameter λt per task. However, in practice, we select λt := λ for all t ∈ [T ] to limit the
number of hyperparameters. We also use an adaptive scheme to have λ in a reasonable range
throughout training, which we explain in Appendix D.2.3.

Appendix B.3 introduces a similar relaxation of Theorem 6.4 (mentioned in Section 6.3.2) in
which the sparsity penalty appears in the outer problem instead of the inner problem. Appendix D.2.5
presents empirical results showing this alternative approach yields very similar results.

Link with meta-learning. The bi-level formulation Problem (6.6) is closely related to metric-

based meta-learning methods [Snell et al., 2017, Bertinetto et al., 2019], where a shared represen-
tation fθ̂ is learned across all tasks via simple task-specific predictors, such as linear classifiers.
In the general meta-learning setting [Finn et al., 2017], one is given a large number of training
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Figure 6.4. Disentanglement performance (MCC) for all three methods considered as a function of
the regularization parameter (left and middle). Varying level of correlation between latents (top)
and noise on the latents (bottom). The right columns show performances of the best hyperparameter
for different values of correlation and noise. We explain what is λmax in Appendix D.2.3.

datasets (Dtrain
t )1≤t≤T , which usually only contain a small number of samples n. As opposed to the

multi-task setting (i.e., unlike in Section 6.3.1), one is also given separate test datasets (Dtest
t )1≤t≤T

of n′ samples for each task t, to evaluate how well the learned model generalizes to new test samples.
In meta-learning, the goal is to learn a learning procedure that will generalize well on new unseen
tasks.

Formally, metric-based meta-learning can be formulated as

min
θ̂

1
Tn′

T∑
t=1

∑
(x,y)∈Dtest

t

Lout
(
Ŵ

(t)
θ̂

; fθ̂(x), y
)

(6.7)

s.t. Ŵ (t)
θ̂
∈ arg min

W̃

1
n

∑
(x,y)∈Dtrain

t

Lin
(
W̃ ; fθ̂(x), y

)
.

The main difference between Problem (6.6) and (6.7) is that, in the latter, the inner and outer loss
functions Lin and Lout are not evaluated on the same dataset. Section 6.5.2 shows experiments with
a meta-learning variant of Problem (6.6) based on group Lasso multiclass SVM predictors.

6.4. Related Work
Disentanglement. Since the work of Bengio et al. [2013], many methods have been proposed

to learn disentangled representations based on various heuristics [Higgins et al., 2017, Chen
et al., 2018, Kim and Mnih, 2018, Kumar et al., 2018, Bouchacourt et al., 2018]. Following
the work of Locatello et al. [2019], which highlighted the lack of identifiability in modern deep
generative models, many works have proposed more or less weak forms of supervision motivated by
identifiability analyses [Locatello et al., 2020a, Klindt et al., 2021, Von Kügelgen et al., 2021, Ahuja
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et al., 2022a,c, Zheng et al., 2022]. A similar line of work have adopted the causal representation
learning perspective [Lachapelle et al., 2022, Lachapelle and Lacoste-Julien, 2022, Lippe et al.,
2022, 2023b, Ahuja et al., 2022b, Yao et al., 2022c, Brehmer et al., 2022].

The problem of identifiability was well known among the independent component analysis (ICA)
community [Hyvärinen et al., 2001, Hyvärinen and Pajunen, 1999] which came up with solutions
for general nonlinear mixing functions by leveraging auxiliary information [Hyvarinen and Morioka,
2016, 2017, Hyvärinen et al., 2019, Khemakhem et al., 2020a,b]. Another approach is to consider
restricted hypothesis classes of mixing functions [Taleb and Jutten, 1999, Gresele et al., 2021,
Zheng et al., 2022, Moran et al., 2022]. Locatello et al. [2020b] proposed a semi-supervised
learning approach to disentangle in cases where a few samples are labelled with the values of the
factors of variations themselves. This is different from our approach as the labels that we consider
can be sampled from some p(y;Wfθ̂(x)), which is more general. Ahuja et al. [2022c] consider
a setting similar to ours, but they rely on the independence and non-gaussianity of the latent factors
for disentanglement using linear ICA. See the end of Section 6.3.2 for further discussions on how
our theory distinguishes itself from most methods cited above.

Multi-task, transfer & invariant learning. While the statistical advantages of multi-task repre-
sentation learning are well understood [Lounici et al., 2011a,b, Maurer et al., 2016], the theoretical
benefits of disentanglement for transfer learning are not clearly established (apart from Zhang et al.
2022). Some works have investigated this question empirically and obtained both positive [van
Steenkiste et al., 2019, Miladinović et al., 2019, Dittadi et al., 2021] and negative results [Locatello
et al., 2019, Montero et al., 2021]. Invariant risk minimization [Arjovsky et al., 2020, Ahuja et al.,
2020, Krueger et al., 2021a, Lu et al., 2021] aims at learning a representation that elicits a single pre-
dictor that is optimal for all tasks. This differs from our approach which learns one predictor per task.

Dictionary learning and sparse coding. We contrast our approach, which jointly learns a
dense representation and sparse task-specific predictors (Problem (6.6)), with the line of work
which consists in learning sparse representations [Chen et al., 1998, Gribonval and Lesage, 2006].
For instance, sparse dictionary learning [Mairal et al., 2009, 2011, Maurer et al., 2013] is an
unsupervised technique that aims at learning a dictionary of atoms used to reconstruct inputs via
sparse linear combinations of its elements. The representation of a single input consists of the
coefficients of the linear combination of atoms that minimizes a sparsity-regularized reconstruction
loss. In the case of supervised dictionary learning [Mairal et al., 2008], an additional (potentially
expressive) classifier is learned on top of that representation. This large literature has led to a wide
variety of estimators: for instance, Mairal et al. [2008, Eq. 4], which minimizes the sum of the
classification error and the approximation error of the code, or Mairal et al. [2011], which introduces
bi-level formulations. While sharing similar optimization challenges, our method is conceptually
different and computes the representation of a single input x by evaluating the learned function fθ̂.
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6.5. Experiments
We present experiments on disentanglement and few-shot learning. Our implementation relies

on jax and jaxopt [Bradbury et al., 2018, Blondel et al., 2022] and is available here: https:
//github.com/tristandeleu/synergies-disentanglement-sparsity.

6.5.1. Disentanglement in 3D Shapes

We now illustrate Theorem 6.1 by applying Problem (6.6) to tasks generated using the 3D
Shapes dataset [Burgess and Kim, 2018].

Data generation. For all tasks t, the labelled dataset Dt = {(x(t,i)), y(t,i))}n
i=1 is generated

by first sampling the ground-truth latent variables z(t,i) i.i.d. according to some distribution p(z),
while the corresponding input is obtained doing x(t,i) := f−1

θ (z(t,i)) (fθ is invertible in 3D Shapes).
Then, a sparse weight vector w(t) is sampled randomly to compute the labels of each example as
y(t,i) := w(t) · z(t,i) + ϵ(t,i), where ϵ(t,i) is independent Gaussian noise. Figure 6.4 explores various
choices of p(z) by varying the level of correlation between the latent variables and by varying
the level of noise on the ground-truth latents. See Appendix D.2 for more details about the data
generating process and Figure 6.7 to visualize various p(z).

Algorithms. In this setting where p(y;η) is a Gaussian with fixed variance, the inner problem
of Problem (6.6) amounts to Lasso regression, we thus refer to this approach as inner-Lasso. We
also evaluate a simple variation of Problem (6.6) in which the L1 norm is replaced by an L2 norm
and refer to it as inner-Ridge. In addition, we evaluate the representation obtained by performing
linear ICA [Comon, 1992] on the representation learned by inner-Ridge: the case λ = 0 corresponds
to the approach of Ahuja et al. [2022c].

Discussion. Figure 6.4 reports disentanglement performances of the three methods, as measured
by the mean correlation coefficient, or MCC [Hyvarinen and Morioka, 2016, Khemakhem et al.,
2020a] (Appendix D.2). In all settings, inner-Lasso obtains high MCC for some values of λ, being
on par or surpassing the baselines. As the theory suggests, it is robust to high levels of correlations
between the latents, as opposed to inner-Ridge with ICA which is very much affected by strong
correlations (since ICA assumes independence). We can also see how additional noise on the
latent variables hurts inner-Ridge with ICA while leaving inner-Lasso unaffected. Figure 6.6 in
Appendix D.2 shows that all methods find a representation which is linearly equivalent to the
ground-truth representation, except for very large values of λ. Appendix D.2.4 studies empirically
to what extent inner-Lasso is robust to violations of Assumption 6.7, Appendix D.2.6 presents a
visual evaluation of disentanglement and Appendix D.2.7 reports the DCI metric [Eastwood and
Williams, 2018] on the same experiments. We did not explore hyperparameter selection in this
work, which is a difficult problem for disentanglement because a goodness-of-fit score evaluated on
a held-out dataset will not be informative because of the lack of identifiability. Nevertheless, one
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can use heuristics such as the unsupervised disentanglement ranking score proposed by Duan et al.
[2020].

6.5.2. Sparse task-specific predictors in few-shot learning

Despite the lack of ground-truth latent factors in standard few-shot learning benchmarks, we
also evaluate sparse meta-learning objectives on the miniImageNet dataset [Vinyals et al., 2016].
The purpose of this experiment is to show that the sparse formulation of standard metric-based meta-
learning techniques reaches similar performance while using a fraction of the features (Figure 6.5,
right).

Inspired by Lee et al. [2019], where the task-specific classifiers are multiclass support-vector
machines (SVMs, Crammer and Singer 2001), we propose to use group Lasso penalized multiclass
SVMs, to introduce sparsity in the classifiers. Using the notation of (6.7), we choose

Lin(W ; fθ̂(xi),yi) = max
l∈[k]

((Wyi: −Wl:) · fθ̂(xi)− Yil) (6.8)

Lout(W ; fθ̂(xi),yi) = CE(W fθ̂(xi),Yi:) , (6.9)

with Y ∈ Rn×k the one-hot encoding of y ∈ Rn and CE the cross-entropy. The difference with
Lee et al. [2019] is the sparsity-promoting term ∥W ∥2,1, which makes the bi-level optimization
problem harder to solve. That is why we propose solving the dual [Boyd et al., 2004, Chap. 5] of
this inner optimization problem, which writes

min
Λ∈Rn×k

1
λ2

m∑
j=1

∥BST
(
(Y −Λ)⊤F:j, λ1

)
∥2 + ⟨Y ,Λ⟩

s.t. ∀i, l,∈ [n]× [k],
k∑

l′=1

Λil′ = 1 and Λil ≥ 0 , (6.10)

with BST : (a, τ) 7→ (1− τ/∥a∥)+ a is the block soft-thresholding operator, F ∈ Rn×m

the concatenation of {fθ̂(x)}(x,y)∈Dtrain . In addition, the primal-dual link writes,
∀j ∈ [m], W:j = BST

(
(Y −Λ)⊤F:j, λ1

)
/λ2. The derivation of the dual can be found

in Appendix C.1, Solving this kind of problem in the dual is standard in the SVM literature: it has
been proven to be computationally advantageous [Hsieh et al., 2008] when the number of features
m is significantly larger than the number of samples n (here m = 1.6× 104 and n ≤ 25). Details
on how to solve and differentiate through Problem (6.10) are in Appendix D.3.

Discussion. In Figure 6.5 (right), we observe that the accuracy of the sparse meta-learning
method on novel (meta-validation) tasks is similar to the dense counterpart (λ = 0), while using
only a few of the features available (around 30% of sparsity, with no impact on the performance).
Naturally, the performance starts to drop as the sparsity level increases though, albeit being still
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Figure 6.5. Left. Effect of sparsity on the percentage of tasks using specific features, with our meta-
learning objective, on miniImageNet. Right. The meta-validation accuracy of the meta-learning
algorithm against the average level of sparsity in the task-specific predictor, for different values of λ.

competitive. We also report in Figure 6.5 (left) how frequently each feature in the learned repre-
sentation is used by the task-specific predictors on meta-validation tasks (sorted by usage, for each
λ). The gradual decrease in usage suggests that the features are reused in different contexts, across
different tasks.

6.6. Conclusion
In this work, we investigated the synergies between sparsity, disentanglement and generalization.

We showed that when the downstream task can be solved using only a fraction of the factors of
variations, disentangled representations combined with sparse task-specific predictors can improve
generalization (Section 6.2). Our novel identifiability result (Theorem 6.1) sheds light on how, in a
multi-task setting, sparsity regularization on the task-specific predictors can induce disentanglement.
This led to a practical bi-level optimization problem that was shown to yield disentangled represen-
tations on regression tasks based on the 3D Shapes dataset. Finally, we explored the connection
between this bi-level formulation and meta-learning, and we showed how sparse task-specific
predictors may achieve similar performance on unseen tasks with only a fraction of the features.
Future work could explore identifiability in a more general setting where the task-specific predictors
are potentially nonlinear, which should be applicable to more problems.
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Appendices of Chapter 6

A. Proofs of Section 6.2
Proposition 6.1. Let Ŵ (θ̂)

n and Ŵ (θ)
n be the solutions to Problem (6.1) with the representations

fθ̂ and fθ, respectively (which we assume are unique). If fθ̂ and fθ are linearly equivalent

(Assumption 6.1), then we have, ∀x ∈ X , Ŵ (θ̂)
n fθ̂(x) = Ŵ

(θ)
n fθ(x).

Proof By definition of Ŵ (θ̂), we have that, for all Ŵ ∈ Rk×m,∑
(x,y)∈D

log p(y; Ŵ (θ̂)fθ̂(x)) ≥
∑

(x,y)∈D

log p(y; Ŵfθ̂(x)) (6.11)

∑
(x,y)∈D

log p(y; Ŵ (θ̂)Lfθ(x)) ≥
∑

(x,y)∈D

log p(y; ŴLfθ(x)) . (6.12)

Because Rk×mL = Rk×m, we have that, for all Ŵ ∈ Rk×m,∑
(x,y)∈D

log p(y; Ŵ (θ̂)Lfθ(x)) ≥
∑

(x,y)∈D

log p(y; Ŵfθ(x)) , (6.13)

which is to say that Ŵ (θ) = Ŵ (θ̂)L, or put differently, Ŵ (θ̂) = Ŵ (θ)L−1. It implies

Ŵ (θ̂)fθ̂(x) = Ŵ (θ)L−1Lfθ(x) = Ŵ (θ)fθ(x) , (6.14)

which is what we wanted to show.

Proposition 6.2. Let Ŵ (θ̂)
∞ be the (assumed unique) solution of the population-based MLE,

arg maxW̃ Ep(x,y) log p(y; W̃fθ̂(x)). If Assumption 6.1 (linear equivalence) & Assumption 6.2

(data generating process) hold, Ŵ (θ̂)
∞ = WL−1.

Proof By definition of Ŵ (θ̂)
∞ , we have that, for all W̃ ∈ Rk×m,

Ep(x,y) log p(y; Ŵ (θ̂)
∞ fθ̂(x)) ≥ Ep(x,y) log p(y; W̃fθ̂(x)) (6.15)

Ep(x,y) log p(y; Ŵ (θ̂)
∞ Lfθ(x)) ≥ Ep(x,y) log p(y; W̃Lfθ(x)) . (6.16)



Norms & pseudonorms
∥·∥ Euclidean/Frobenius norm on vectors/matrices

∥A∥2,1 :=
∑m

j=1 ∥A:j∥
∥A∥2,0 :=

∑m
j=1 1∥A:j∥≠0, where 1 is the indicator function.

Data
x ∈ Rd Observations
X ⊆ Rd Support of observations
y ∈ R Target
Y ⊆ R Support of targets

Learned/ground-truth model
W ∈ Rk×m Ground-truth coefficients
Ŵ ∈ Rk×m Learned coefficients

θ Ground-truth parameters of the representation
θ̂ Learned parameters of the representation

fθ : Rd → Rm Ground-truth representation
fθ̂ : Rd → Rm Learned representation

η ∈ Rk Parameter of the distribution p(y;η)
PW Distribution over ground-truth coefficient matricesW
S := {j ∈ [m] |W:j ̸= 0} (support ofW )

PW |S Conditional distribution ofW given S.
p(S) Ground-truth distribution over possible supports S
S Support of the distribution p(S)

Optimization
W Primal variable
Λ Dual variable

h∗ : a 7→ supb∈Rd⟨a, b⟩ − h(b), Fenchel conjugate of the function
h : Rd → R

f□g : a 7→ minb f(a − b) + g(b) , inf-convolution of the functions f
and g

BST : (a, τ) 7→ (1− τ/∥a∥)+ a, block soft-thresholding operator

Table 6.1. Table of notations.

In particular, the inequality holds for W̃ := WL−1, which yields

Ep(x,y) log p(y; Ŵ (θ̂)
∞ Lfθ(x)) ≥ Ep(x,y) log p(y;Wfθ(x)) (6.17)

0 ≥ Ep(x,y)

[
log p(y;Wfθ(x))− log p(y; Ŵ (θ̂)

∞ Lfθ(x))
]

(6.18)

0 ≥ Ep(x)KL(p(y;Wfθ(x)) || p(y; Ŵ (θ̂)
∞ Lfθ(x))) . (6.19)
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Since the KL is always non-negative, we have that,

Ep(x)KL(p(y;Wfθ(x)) || p(y; Ŵ (θ̂)
∞ Lfθ(x))) = 0 , (6.20)

which in turn implies

Ep(x,y) log p(y; Ŵ (θ̂)
∞ Lfθ(x)) = Ep(x,y) log p(y;Wfθ(x)) (6.21)

Ep(x,y) log p(y; Ŵ (θ̂)
∞ Lfθ(x)) = Ep(x,y) log p(y;WL−1Lfθ(x)) (6.22)

Ep(x,y) log p(y; Ŵ (θ̂)
∞ fθ̂(x)) = Ep(x,y) log p(y;WL−1fθ̂(x)) (6.23)

(6.24)

Since the solution to the population MLE from Problem (6.2) is assumed to be unique, this equality
holds if and only if Ŵ (θ̂)

∞ = WL−1.

B. Proofs of Section 6.3

B.1. Technical Lemmas

The lemmas of this section can be skipped at first read.
The following lemma will be important for proving Theorem 6.3. The argument is taken

from Lachapelle et al. [2022].

Lemma 6.1 (Sparsity pattern of an invertible matrix contains a permutation). Let L ∈ Rm×m be an

invertible matrix. Then, there exists a permutation σ such that Li,σ(i) ̸= 0 for all i.

Proof Since the matrix L is invertible, its determinant is non-zero, i.e.,

det(L) :=
∑

σ∈Sm

sign(σ)
m∏

i=1

Li,σ(i) ̸= 0 , (6.25)

where Sm is the set of m-permutations. This equation implies that at least one term of the sum is
non-zero, meaning there exists σ ∈ Sm such that for all i ∈ [m], Li,σ(i) ̸= 0.

The following technical lemma will help us dealing with almost-everywhere statements and can
be safely skipped at a first read. Before presenting it, we recall the formal definition of a support of
a distribution.

Definition 6.2. The support of a Borel measure µ over a topological space (X, τ) is the set of point

x ∈ X such that, for all open set U ∈ τ containing x, µ(U) > 0.

Throughout this work, we assume implicitly that all measures are Borel measures with respect
to the standard topology of the space on which they are defined.
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Lemma 6.2. Assumption 6.5 is equivalent to the following statement: For all E0 ⊆ Rk×m such that

PW (E0) = 0, there existsW (1), . . . ,W (m) ∈ W \E0 and indices i1, ..., im ∈ [k] such that the row

vectorsW (1)
i1,: , . . . ,W

(m)
im,: are linearly independent.

Proof First of all, the "⇐= " direction is trivial since one can simply pick E0 = ∅.
We now show the " =⇒ " direction. First of all, we notice that, since W (1)

i1,: , . . . ,W
(m)
im,: are

linearly independent, they form a matrix with nonzero determinant, i.e.,

det


W

(1)
i1,:
...

W
(m)
im,:

 ̸= 0 . (6.26)

Define the map η : (Rk×m)m → Rm×m as

η(W̄ (1), . . . , W̄ (m)) :=


W̄

(1)
i1,:
...

W̄
(m)
im,:

 , ∀(W̄ (1), . . . , W̄ (m)) ∈ (Rk×m)m , (6.27)

which is continuous. Note that det(·) is also a continuous map, hence det ◦η is continuous as
well. Thus, the set V := (det ◦η)−1(R \ {0}) is open (since R \ {0} is open). Let Pm

W be the
product measure over tuples of matrices (W̄ (1), . . . , W̄ (m)). Note that its support isWm. Because
(W (1), ...,W (m)) is in the open set V and in the support of Pm

W , we have that

0 < Pm
W (V ) (6.28)

= Pm
W (V ∩Wm) + Pm

W (V ∩ (Wm)c) (6.29)

≤ Pm
W (V ∩Wm) + Pm

W ((Wm)c) (6.30)

= Pm
W (V ∩Wm) (6.31)

Let E0 ⊆ Rk×m be such that PW (E0) = 0. Then, we also have that Pm
W (Em

0 ) = 0 and thus

Pm
W ((V ∩Wm) \ Em

0 ) > 0 . (6.32)

This implies that the set ((det ◦η)−1(R \ {0}) ∩ Wm) \ Em
0 is not empty, i.e., there exists

(W̄ (1), . . . , W̄ (m)) ∈ Wm \ Em
0 such that the rows W̄ (1)

i1,: , . . . , W̄
(m)
im,: are linearly independent.

Since the measure zero set E0 was arbitrary, this concludes the proof.

B.2. Proof of Theorem 6.1

This section presents the main results building up to Theorem 6.1.
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For all W ∈ W , we are going to denote by Ŵ (W ) some estimator of W . The following
result provides conditions under which if Ŵ (W ) allows a perfect fit of the ground-truth distribution
p(y | x,W ), then the representation fθ and the parameter W are identified up to an invertible
linear transformation. Many works have showed similar results in various context [Hyvarinen and
Morioka, 2016, Khemakhem et al., 2020a, Roeder et al., 2021, Ahuja et al., 2022c]. We reuse some
of their proof techniques.

Theorem 6.2 (Linear identifiability). Let Ŵ (·) :W → Rk×m. Suppose Assumptions 6.3, 6.4 and

6.5 hold and that, for PW -almost everyW ∈ W and all x ∈ X , the following holds

KL(p(y; Ŵ (W )fθ̂(x))||p(y;Wfθ(x)) = 0 . (6.33)

Then, there exists an invertible matrix L ∈ Rm×m such that, for all x ∈ X , fθ(x) = Lfθ̂(x) and

such that, for PW -almost everyW ∈ W , Ŵ (W ) = WL

Proof By Assumption 6.3, (6.33) implies that, for PW -almost everyW and all x ∈ X ,Wfθ(x) =
Ŵ (W )fθ̂(x). Assumption 6.5 combined with Lemma 6.2 ensures that we can construct an invertible

matrix U :=


W

(1)
i1,:
...

W
(dz)
idz ,:

 such that Ufθ(x) = Ûfθ̂(x) for all x ∈ X where Û :=


Ŵ

(W (1))
i1,:

...

Ŵ
(W (dz))
idz ,:

.

Left-multiplying by U−1 on both sides yields fθ(x) = Lfθ̂(x), where L := U−1Û . Using
the invertible matrix F from Assumption 6.4, we can thus write F = LF̂ where we defined
F̂ := [fθ̂(x(1)), · · · ,fθ̂(x(dz))]. Since F is invertible, so are L and F̂ .

By substituting F = LF̂ in WF = Ŵ (W )F̂ , we obtain WLF̂ = Ŵ (W )F̂ . By right-
multiplying both sides by F̂−1, we obtainWL = Ŵ (W ).

The following theorem is where most of the theoretical contribution of this work lies. Note
that Theorem 6.1, from the main text, is a straightforward application of this result.

Theorem 6.3. (Disentanglement via task sparsity) Let Ŵ (·) : W → Rk×m. Suppose Assump-

tions 6.3, 6.4, 6.5, 6.6, 6.7 hold and that, for PW -almost every W ∈ W and all x ∈ X , the

following holds

KL(p(y; Ŵ (W )fθ̂(x))||p(y;Wfθ(x)) = 0 . (6.34)

Moreover, assume that E∥Ŵ (W )∥2,0 ≤ E∥W ∥2,0, where both expectations are taken w.r.t. PW
and ∥W ∥2,0 :=

∑m
j=1 1(W:j ̸= 0) with 1(·) the indicator function. Then, fθ̂ is disentangled w.r.t.

fθ (Definition 6.1).

Proof First of all, by Assumptions 6.3, 6.4 and 6.5, we can apply Theorem 6.2 to conclude that
fθ(x) = Lfθ̂(x) andWL = Ŵ (W ) (PW -almost everywhere) for some invertible matrix L.

We can thus write E∥WL∥2,0 ≤ E∥W ∥2,0.
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We can write

E∥W ∥2,0 = Ep(S)E[
m∑

j=1

1(W:j ̸= 0) | S] (6.35)

= Ep(S)

m∑
j=1

E[1(W:j ̸= 0) | S] (6.36)

= Ep(S)

m∑
j=1

PW |S[W:j ̸= 0] (6.37)

= Ep(S)

m∑
j=1

1(j ∈ S) , (6.38)

where the last step follows from the definition of S.
We now perform similar steps for E∥WL∥2,0:

E∥WL∥2,0 = Ep(S)E[
m∑

j=1

1(WL:j ̸= 0) | S] (6.39)

= Ep(S)

m∑
j=1

E[1(WL:j ̸= 0) | S] (6.40)

= Ep(S)

m∑
j=1

PW |S[WL:j ̸= 0] (6.41)

= Ep(S)

m∑
j=1

PW |S[W:SLS,j ̸= 0] . (6.42)

Notice that

PW |S[W:SLS,j ̸= 0] = 1− PW |S[W:SLS,j = 0] (6.43)

Let Nj be the support of L:j , i.e., Nj := {i ∈ [m] | Li,j ̸= 0}. When S ∩ Nj = ∅, LS,j = 0 and
thus PW |S[W:SLS,j = 0] = 1. When S ∩ Nj ̸= ∅, LS,j ̸= 0, by Assumption 6.6 we have that
PW |S[W:SLS,j = 0] = 0. Thus

PW |S[W:SLS,j ̸= 0] = 1− 1(S ∩Nj = ∅) (6.44)

= 1(S ∩Nj ̸= ∅) , (6.45)

which allows us to write

E∥WL∥2,0 = Ep(S)

m∑
j=1

1(S ∩Nj ̸= ∅) . (6.46)
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We thus have that

E∥WL∥2,0 ≤ E∥W ∥2,0 (6.47)

Ep(S)

m∑
j=1

1(S ∩Nj ̸= ∅) ≤ Ep(S)

m∑
j=1

1(j ∈ S) . (6.48)

Since L is invertible, by Lemma 6.1, there exists a permutation σ : [m] → [m] such that, for all
j ∈ [m], Lj,σ(j) ̸= 0. In other words, for all j ∈ [m], j ∈ Nσ(j). Of course we can permute the
terms of the l.h.s. of (6.48), which yields

Ep(S)

m∑
j=1

1(S ∩Nσ(j) ̸= ∅) ≤ Ep(S)

m∑
j=1

1(j ∈ S) (6.49)

Ep(S)

m∑
j=1

(
1(S ∩Nσ(j) ̸= ∅)− 1(j ∈ S)

)
≤ 0 . (6.50)

We notice that each term 1(S ∩Nσ(j) ̸= ∅)− 1(j ∈ S) ≥ 0 since whenever j ∈ S, we also have
that j ∈ S ∩Nσ(j) (recall j ∈ Nσ(j)). Thus, the l.h.s. of (6.50) is a sum of non-negative terms which
is itself non-positive. This means that every term in the sum is zero:

∀S ∈ S, ∀j ∈ [m], 1(S ∩Nσ(j) ̸= ∅) = 1(j ∈ S) . (6.51)

Importantly,

∀j ∈ [m], ∀S ∈ S, j ̸∈ S =⇒ S ∩Nσ(j) = ∅ , (6.52)

and since S ∩Nσ(j) = ∅ ⇐⇒ Nσ(j) ⊆ Sc we have that

∀j ∈ [m], ∀S ∈ S, j ̸∈ S =⇒ Nσ(j) ⊆ Sc (6.53)

∀j ∈ [m], Nσ(j) ⊆
⋂

S∈S|j ̸∈S

Sc . (6.54)

By Assumption 6.7, we have that
⋃

S∈S|j ̸∈S S = [m] \ {j}. By taking the complement on both sides
and using De Morgan’s law, we get

⋂
S∈S|j ̸∈S S

c = {j}, which implies that Nσ(j) = {j} by (6.54).
Thus, L = DP whereD is an invertible diagonal matrix and P is a permutation matrix.

Before presenting Theorem 6.1 from the main text, we first present a variation of it where we
constrain E∥Ŵ (W )∥2,0 to be smaller than E∥W ∥2,0. We note that this is weaker than imposing
∥Ŵ (W )∥2,0 ≤ ∥W ∥2,0 for all W ∈ W , as is the case in Problem (6.4) of Theorem 6.1. Note
that Appendix B.3 presents a natural relaxation of Problem (6.55) which we experiment with in
Appendix D.2.5.
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Theorem 6.4 (Sparse multitask learning for disentanglement). Let θ̂ be a minimizer of

min
θ̂

EPW
Ep(x,y|W ) − log p(y; Ŵ (W )fθ̂(x))

s.t. ∀W ∈ W , Ŵ (W ) ∈ arg min
W̃

Ep(x,y|W ) − log p(y; W̃fθ̂(x))

EPW
∥Ŵ (W )∥2,0 ≤ EPW

∥W ∥2,0 ,

(6.55)

where PW and p(x, y |W ) are described in Section 6.3.1. Under Assumptions 6.3, 6.4, 6.5, 6.6,

6.7 and if fθ̃ is continuous for all θ̃, fθ̂ is disentangled w.r.t. fθ (Definition 6.1).

Proof First, notice that

0 ≤ EPW
Ep(x|W )KL(p(y;Wfθ(x)) || p(y; Ŵ (W )fθ̂(x))) (6.56)

EPW
Ep(x,y|W ) − log p(y;Wfθ(x)) ≤ EPW

Ep(x,y|W ) − log p(y; Ŵ (W )fθ̂(x)) . (6.57)

This means the objective is minimized (without constraint) if and only if

Ep(x|W )KL(p(y;Wfθ(x)) || p(y; Ŵ (W )fθ̂(x))) = 0 (6.58)

PW -almost everywhere. For a fixed W , this equality holds if and only if the KL equals zero
p(x |W )-almost everywhere, which, by Assumption 6.3, is true if and only if Wfθ(x) =
Ŵ (W )fθ̂(x) p(x | W )-almost everywhere. Since both Wfθ(x) and Ŵ (W )fθ̂(x) are contin-
uous functions of x, the equality holds over X (the support of p(x |W )).

This unconstrained global minimum can actually be achieved by respecting the constraints
of Problem (6.55) simply by setting θ̂ := θ and Ŵ (W ) := W . Indeed, the first constraint is
satisfied because, for all W̃ ,

0 ≤ Ep(x|W )KL(p(y;Wfθ(x)) || p(y; W̃fθ(x))) (6.59)

Ep(x,y|W ) − log p(y;Wfθ(x)) ≤ Ep(x,y|W ) − log p(y; W̃fθ(x)) , (6.60)

and clearly the lower bound is attained when W̃ := W . The second constraint is trivially satisfied,
since EPW

∥Ŵ (W )∥2,0 = EPW
∥W ∥2,0.

The above implies that if θ̂ is some minimizer of Problem (6.55), we must have that, (i) for
PW -almost every W , Wfθ(x) = Ŵ (W )fθ̂(x) for all x ∈ X , (ii) EPW

||Ŵ (W )||0 ≤ EPW
||W ||0.

Thus, Theorem 6.3 implies the desired conclusion.

Based on Theorem 6.4, we can slightly adjust the argument to prove Theorem 6.1 from the main
text.

258



Theorem 6.1 (Sparse multi-task learning for disentanglement). Let θ̂ be a minimizer of

min
θ̂

EPW
Ep(x,y|W ) − log p(y; Ŵ (W )fθ̂(x)) (6.4)

s.t. Ŵ (W ) ∈ arg min
W̃ s.t.

||W̃ ||2,0≤||W ||2,0

Ep(x,y|W ) − log p(y; W̃fθ̂(x)) ,

where the constraint holds for all W ∈ W and where PW and p(x, y | W ) are described in

Section 6.3.1. Under Assumptions 6.3, 6.4, 6.5, 6.6, 6.7 and if fθ̃ is continuous for all θ̃, fθ̂ is

disentangled w.r.t. fθ (Definition 6.1).

Proof The first part of the argument in the proof of Theorem 6.4 applies here as well, meaning:
unconstrained minimization of the objective holds if and only if, for PW -almost everyW and all
x ∈ X , Wfθ(x) = Ŵ (W )fθ̂(x). And again, this unconstrained minimum can be achieved by
respecting the constraint of Problem (6.4) simply by setting θ̂ := θ and Ŵ (W ) := W .

This means that if θ̂ is some minimizer of Problem (6.4), we must have (i) for PW -almost every
W , Wfθ(x) = Ŵ (W )fθ̂(x) for all x ∈ X and (ii) for all W ∈ W , ∥Ŵ (W )∥2,0 ≤ ∥W ∥2,0. Of
course the latter point implies EPW

||Ŵ (W )||2,0 ≤ EPW
||W ||2,0, which allows us to apply Theo-

rem 6.3 to obtain the desired conclusion.

B.3. Regularization in the outer problem instead of in the inner problem

Theorem 6.4 presented an alternative bilevel optimization problem to the one of Theorem 6.1
in the main text. Essentially, the difference is that the constraints ∥Ŵ (W )∥2,0 ≤ ∥W ∥2,0 for all
W ∈ W are replaced by the unique constraint E∥Ŵ (W )∥2,0 ≤ E∥W ∥2,0, which is a weaker
constraint.

In Section 6.3.4, we introduced a tractable relaxation of the problem of Theorem 6.1. In this
section, we introduce a relaxation of the problem of Theorem 6.4.

A natural idea is to replace the constraint E∥Ŵ (W )∥2,0 ≤ E∥W ∥2,0 of Theorem 6.4 by a penalty
λE∥Ŵ (W )∥2,1 in the outer problem, like so:

min
θ̂

EPW
Ep(x,y|W ) − log p(y; Ŵ (W )fθ̂(x)) + λEPW

∥Ŵ (W )∥2,1

s.t. ∀W ∈ W , Ŵ (W ) ∈ arg min
W̃

Ep(x,y|W ) − log p(y; W̃fθ̂(x)) ,
(6.61)
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in which we can replace the expectations by empirical averages to get

min
θ̂

1
T

T∑
t=1

− 1
n

∑
(x,y)∈Dt

log p(y; Ŵ (t)fθ̂(x)) + λ∥Ŵ (t)∥2,1

 (6.62)

s.t. Ŵ (t) ∈ arg min
W̃

1
n

∑
(x,y)∈Dt

− log p(y; W̃fθ̂(x)) .

This can be optimized in the same way as Problem (6.6) via implicit differentiation and standard
gradient descent algorithms. The essential difference between Problem (6.62) and Problem (6.6)
is that the former has regularization in the outer problem instead of in the inner problem. From a
practical point of view, this problem is typically simpler than Problem (6.6) since the inner objective
is generally smooth, and standard implicit differentiation techniques apply (the non-smooth term
∥W̃ ∥2,1 in the inner objective of Problem (6.6) requiring some care with implicit differentiation;
Bertrand et al., 2022). We provide some experimental results in Appendix D.2.5 demonstrating that
this alternative works as well.

B.4. What can go wrong when Assumption 6.6 is violated?

Theorem 6.2 allowed us to conclude that Ŵ (W ) = WL for PW -almost every W and that
Lfθ̂(x) = fθ(x) for all x ∈ X . The rest of the argument leading up to Theorem 6.1 essentially
amounts to showing that having ∥Ŵ (W )∥2,0 ≤ ∥W ∥2,0 for allW ∈ W forcesL to be a permutation-
scaling matrix. The intuition is that ∥WL∥2,0 ≤ ∥W ∥2,0 everywhere should force L to be sparse,
and maximal sparsity is precisely when L is a permutation-scaling matrix. But just how manyW
do we need and how diverse should they be to make this argument formal? Our answer is given
by Assumption 6.6. But what can go wrong when this assumption is not satisfied? To answer this
question, we construct a counterexample in which the distribution PW satisfies Assumption 6.7 but
not Assumption 6.6 and a matrix L that satisfies the constraint ∥WL∥2,0 ≤ ∥W ∥2,0 everywhere
but that is not a permutation-scaling matrix. Consider a distribution PW with support W :=
{[1, 1, 0], [1, 0, 1], [0, 1, 1]} (which is finite) and let

L :=

 3 −1 −1
−1 1 3
1 3 1

 , (6.63)
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which, of course, is not a permutation-scaling matrix. One can then compute to show that the
sparsity constraint holds for allW ∈ W:

∥[1 1 0]L∥2,0 = ∥[2 0 2]∥2,0 ≤ 2 = ∥[1 1 0]∥2,0 (6.64)

∥[1 0 1]L∥2,0 = ∥[4 2 0]∥2,0 ≤ 2 = ∥[1 0 1]∥2,0 (6.65)

∥[0 1 1]L∥2,0 = ∥[0 4 4]∥2,0 ≤ 2 = ∥[0 1 1]∥2,0 . (6.66)

This means that, with such a PW , solving the bilevel problem of Theorem 6.1 will not necessarily
lead to a disentangled representation since one could fall on a “bad” L such as the one defined
above.

B.5. Assumption 6.7 holds with high probability when |S| large

In this section, we provide a probabilistic argument showing that Assumption 6.7 holds with
high probability when the number of supports is large. Let S(T ) := {S(1), S(2), . . . , S(T )} be the set
of supports observed, where T is the number of supports. To make this argument, we will assume
that the S(t) are sampled independently and identically. Moreover, P[i ∈ S(t)] = p ∈ (0, 1) and
these events are assumed independent.

The next proposition shows that the probability that Assumption 6.7 fails under the above model
is very small when T is large.

Proposition 6.3. Given the probabilistic model described above, we have

P

∃j ∈ [m] s.t.
⋃

S∈S(T )|j ̸∈S

S ̸= [m] \ {j}

 ≤ m(m− 1)(1− p(1− p))T T →∞−−−→ 0 . (6.67)

Proof By rewriting slightly the original probablity statement and applying the union bound, we get

P

∃j ∈ [m] s.t.
⋃

S∈S(T )|j ̸∈S

S ̸= [m] \ {j}

 (6.68)

=P

∃j ∈ [m], i ∈ [m] \ {j} s.t. i ̸∈
⋃

S∈S(T )|j ̸∈S

S

 (6.69)

≤
m∑

j=1

∑
i∈[m]\{j}

P

i ̸∈ ⋃
S∈S(T )|j ̸∈S

S

 , (6.70)
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We can further write

P

i ̸∈ ⋃
S∈S(T )|j ̸∈S

S

 = P
[
∀t ∈ [T ], j ̸∈ S(t) =⇒ i ̸∈ S(t)] (6.71)

= P
[
∀t ∈ [T ], j ∈ S(t) ∨ i ̸∈ S(t)] (6.72)

=
T∏

t=1

P
[
j ∈ S(t) ∨ i ̸∈ S(t)] , (6.73)

where the last step holds because the supports S(t) are mutually independent. We continue and get

P

i ̸∈ ⋃
S∈S(T )|j ̸∈S

S

 =
T∏

t=1

P
[
j ∈ S(t) ∨ i ̸∈ S(t)] (6.74)

=
T∏

t=1

(1− P
[
j ̸∈ S(t) ∧ i ∈ S(t)]) (6.75)

=
T∏

t=1

(1− P
[
j ̸∈ S(t)]P [i ∈ S(t)]) (6.76)

=
T∏

t=1

(1− (1− p)p) , (6.77)

where we used the fact that the events j ̸∈ S(t) and i ∈ S(t) are independent (when i ̸= j). Bringing
everything together, one gets

P

∃j ∈ [m] s.t.
⋃

S∈S(T )|j ̸∈S

S ̸= [m] \ {j}

 ≤ m∑
j=1

∑
i∈[m]\{j}

T∏
t=1

(1− (1− p)p) (6.78)

= m(m− 1)(1− (1− p)p)T (6.79)

(6.80)

which converges to 0 when T →∞ since 0 < 1− (1− p)p < 1.

B.6. A distribution without density satisfying Assumption 6.6

Interestingly, there are distributions overW1,S | S that do not have a density w.r.t. the Lebesgue
measure, but still satisfy Assumption 6.6. This is the case, e.g., whenW1,S | S puts uniform mass
over a (|S| − 1)-dimensional sphere embedded in R|S| and centered at zero. In that case, for all
a ∈ R|S|\{0}, the intersection of span{a}⊥, which is (|S| − 1)-dimensional, with the (|S| − 1)-
dimensional sphere is (|S| − 2)-dimensional and thus has probability zero of occurring. One can
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certainly construct more exotic examples of measures satisfying Assumption 6.6 that concentrate
mass on lower dimensional manifolds.

C. Optimization details

C.1. Group Lasso SVM Dual

Notation. The Fenchel conjugate of a function h : Rd → R is written h∗ and is defined for any
y ∈ Rd, by h∗(y) = supx∈Rd⟨x, y⟩ − h(x).
Definition 6.3. (Primal Group Lasso Soft-Margin Multiclass SVM.) The primal problem of the

group Lasso soft-margin multiclass SVM is defined as

min
W∈Rk×m

Lin(W ;F ,Y ) :=
n∑

i=1

max
l∈[k]

(1 + (Wyi: −Wl:)Fi: − Yil) + λ1∥W ∥2,1 + λ2
2 ∥W ∥

2

(6.81)

Proposition 6.4. (Dual Group Lasso Soft-Margin Multiclass SVM.) The dual of the inner problem

with Lin as defined in (6.8) writes

min
Λ∈Rn×k

1
λ2

m∑
j=1

∥BST
(
(Y −Λ)⊤F:j, λ1

)
∥2 + ⟨Y ,Λ⟩

s.t. ∀i, l,∈ [n]× [k],
k∑

l′=1

Λil′ = 1 and Λil ≥ 0 , (6.10)

with BST : (a, τ) 7→ (1− τ/∥a∥)+ a is the block soft-thresholding operator, F ∈ Rn×m the

concatenation of {fθ̂(x)}(x,y)∈Dtrain . In addition, the primal-dual link writes, ∀j ∈ [m], W:j =
BST

(
(Y −Λ)⊤F:j, λ1

)
/λ2.

The primal objective 6.81 can be hard to minimize with modern solvers. Moreover in few-shot
learning applications, the number of features m is usually much larger than the number of samples
n (in Lee et al. 2019, m = 1.6 · 104 and n ≤ 25), hence we solve the dual of Problem (6.81).
Proof [Proof of Proposition 6.4] Let g : u 7→ λ1∥u∥ + λ2

2 ∥u∥
2. Proof of Proposition 6.4 is

composed of the following lemmas.

Lemma 6.3. i) The dual of Problem (6.81) is

min
Λ∈Rn×k

m∑
j=1

g∗((Y −Λ)⊤F:j) + ⟨Y ,Λ⟩

s.t. ∀i ∈ [n],
k∑

l=1

Λil = 1 , ∀i ∈ [n], l ∈ [k], Λil ≥ 0 ,

(6.82)

where g∗ is the Fenchel conjugate of the function g.
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ii) The Fenchel conjugate of the function g writes

∀v ∈ RK , g∗(v) = 1
λ2
∥BST(v, λ1)∥2 . (6.83)

Lemmas 6.4 i) & 6.4 ii) yields Proposition 6.4.
Proof [Proof of Lemma 6.4 i).] The Lagrangian of Problem (6.81) writes:

L(W , ξ,Λ) =
m∑

j=1

g(W:j) +
∑

i

ξi +
n∑

i=1

k∑
l=1

(1− ξi −Wyi: · Fi: +Wl: · Fi: − Yil)Λil .

(6.84)

∂ξL(W , ξ,Λ) = 0 yields ∀i ∈ [n],
∑k

l=1 Λil = 1. Then the Lagrangian rewrites

min
W

min
ξ
L(W , ξ,Λ) = min

W ,ξ

m∑
j=1

g(W:j) +
n∑

i=1

ξi +
n∑

i=1

k∑
l=1

(−ξi −Wyi: · Fi: +Wl: · Fi: − Yil)Λil

=
m∑

j=1

min
W:j

g(W:j)−
n∑

i=1

k∑
l=1

(Fi:Yil − Fi:Λil)Wl:︸ ︷︷ ︸
=⟨(Y −Λ)⊤F:j ,W:j⟩︸ ︷︷ ︸

=−g∗((Y −Λ)⊤F:j)

−
n∑

i=1

k∑
l=1

YilΛil .

Then the dual problem writes:

min
Λ∈Rn×k

m∑
j=1

g∗ ((Y −Λ)⊤F:j
)

+ ⟨Y ,Λ⟩ (6.85)

s. t. ∀i ∈ [n]
k∑

l=1

Λil = 1 ,∀i ∈ [n], l ∈ [k], Λil ≥ 0 . (6.86)

Proof [Proof of Lemma 6.4 ii)] Let h : u 7→ ∥u∥2 + κ
2∥u∥

2. The proof of Lemma 6.4 i) is done
using the following steps.

Lemma 6.4. i) h∗(v) = 1
2κ
∥v∥2

2 −
(

κ
2∥·∥

2
2□∥·∥2

)
(v/κ).

ii)
(

κ
2∥·∥

2
2□∥·∥2

)
(v) = κ

2∥v∥
2
2 − 1

2κ
∥BST(κv, 1)∥2.

Proof [Proof of Lemma 6.4 i)] With κ = λ2/λ1, the Fenchel transform of h : w 7→ ∥w∥2 + κ∥w∥2.
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h(u) = ∥u∥2 + κ
2∥u∥

2
2

h∗(v) = sup
w

(
v⊤w − ∥w∥2 − κ

2∥w∥
2
2
)

= 1
2κ
∥v∥2

2 + sup
w

(
−κ

2∥w − v/κ∥
2
2 − ∥w∥2

)
= 1

2κ
∥v∥2

2 − inf
w

(
κ
2∥w − v/κ∥

2
2 + ∥w∥2

)
= 1

2κ
∥v∥2

2 − (κ
2∥·∥

2
2□∥·∥2)(v/κ) .

Proof [Proof of Lemma 6.4 ii)]

(κ
2∥·∥

2
2□∥·∥2)(v) = (κ

2∥·∥
2
2□∥·∥2)∗∗(v)

= ( 1
2κ
∥·∥2

2 + ιB2)∗(v)

= sup
∥w∥2≤1

(
v⊤w − 1

2κ
∥w∥2

2
)

= κ
2∥v∥

2 + sup
∥w∥2≤1

− 1
2κ
∥κv −w∥2

2

= κ
2∥v∥

2 − 1
2κ
∥BST(κv, 1)∥2

2 .

g∗(u) = λ1h
∗(u/λ1)

= λ1

2κ∥BST(u/λ1, 1)∥2

= λ2
1

2λ2
∥BST(u/λ1, 1)∥2

= 1
λ2
∥BST(u, λ1)∥2 .
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D. Experimental details

D.1. Disentangled representation coupled with sparsity regularization im-
proves generalization

We consider the following data generating process: We sample the ground-truth features fθ(x)
from a Gaussian distribution N (0,Σ) where Σ ∈ Rm×m and Σi,j = 0.9|i−j|. Moreover, the labels
are given by y = w · fθ(x) + ϵ where w ∈ Rm, ϵ ∼ N (0, 0.04) and m = 100. The ground-truth
weight vector w is sampled once from N (0, Im×m) and mask some of its components to zero:
we vary the fraction of meaningful features (ℓ/m) from very sparse (ℓ/m = 5%) to less sparse
(ℓ/m = 80%) settings. For each case, we study the sample complexity by varying the number of
training samples from 25 to 150, but evaluating the generalization performance on a larger test
dataset (1000 samples). To generate the entangled representations, we multiply the true latent
variables fθ(x) by a randomly sampled orthogonal matrix L, i.e., fθ̂(x) := Lfθ(x). For the
disentangled representation, we simply consider the true latents, i.e., fθ̂(x) := fθ(x). Note that in
principle we could have considered an invertible matrix L that is not orthogonal for the linearly
entangled representation and a component-wise rescaling for the disentangled representation. The
advantage of not doing so and opting for our approach is that the conditioning number of the
covariance matrix of fθ̂(x) is the same for both the entangled and the disentangled, hence offering
a fairer comparison.

For both the case of entangled and disentangled representation, we solve the regression problem
with Lasso and Ridge regression, where the associated hyperparameters (regularization strength)
were inferred using 5-fold cross-validation on the input training dataset. Using both lasso and ridge
regression would help us to show the effect of encouraging sparsity.

In Figure 6.1 for the sparsest case (ℓ/m = 5%), we observe that that Disentangled-Lasso
approach has the best performance when we have fewer training samples, while the Entangled-Lasso
approach performs the worst. As we increase the number of training samples, the performance of
Entangled-Lasso approaches that of Disentangled-Lasso, however, learning under the Disentangled-
Lasso approach is sample efficient. Disentangled-Lasso obtains R2 greater than 0.5 with only
25 training samples, while other approaches obtain R2 close to zero. Also, Disentagled-Lasso
converges to the optimal R2 using only 50 training samples, while Entangled-Lasso does the same
with 150 samples.

Note that the improvement due to disentanglement does not happen for the case of ridge
regression as expected and there is no difference between the methods Disentangled-Ridge and
Entangled-Ridge because the L2 norm is invariant to orthogonal transformation. Also, having
sparsity in the underlying task is important. Disentangled-Lasso shows the max improvement for
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the case of ℓ/m = 5%, with the gains reducing as we decrease the sparsity in the underlying task
(l/m = 80%).

D.2. Disentanglement in 3D Shapes
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Figure 6.6. Prediction performance (R Score) for inner-Lasso, inner-Ridge and inner-Ridge com-
bined with ICA as a function of the regularization parameter (left and middle). Varying level
of correlation between latents (top) and noise on the latents (bottom). The right columns shows
performance of the best hyperparameter for different values of correlation and noise levels.

D.2.1. Dataset generation. Details on 3D Shapes. The 3D Shapes dataset [Burgess and Kim,
2018] contains synthetic images of colored shapes resting in a simple 3D scene. These images vary
across 6 factors: Floor hue (10 values linearly spaced in [0, 1]); Wall hue (10 values linearly spaced
in [0, 1]); Object hue (10 values linearly spaced in [0, 1]); Scale (8 values linearly spaced in [0, 1]);
Shape (4 values in [0, 1, 2, 3]); and Orientation (15 values linearly spaced in [-30, 30]). These are
the factors we aim to disentangle. We standardize them to have mean 0 and variance 1. We denote
by Z ⊆ R6, the set of all possible latent factor combinations. In our framework, this corresponds
to the support of the ground-truth features fθ(x). We note that the points in Z are arranged in a
grid-like fashion in R6.

Task generation. For all tasks t, the labelled dataset Dt = {(x(t,i)), y(t,i))}n
i=1 is generated

by first sampling the ground-truth latent variables z(t,i) := fθ(x(t,i)) i.i.d. according to some
distribution p(z) over Z , while the corresponding input is obtained doing x(t,i) := f−1

θ (z(t,i))
(fθ is invertible in 3D Shapes). Then, a sparse weight vector w(t) is sampled randomly by doing
w(t) := w̄(t) ⊙ s(t), were ⊙ is the Hadamard (component-wise) product, w̄(t) ∼ N (0, I) and
s ∈ {0, 1}6 is a binary vector with independent components sampled from a Bernoulli distribution
with (p = 0.5). Then, the labels are computedfor each example as y(t,i) := w(t) · x(t,i) + ϵ(t,i),
where ϵ(t,i) is independent Gaussian noise. In every task, the dataset has size n = 50. New tasks
are generated continuously as we train. Figures 6.4 & 6.6 explores various choices of p(z), i.e., by
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varying the level of correlation between the latent variables and by varying the level of noise on the
ground-truth latents. Figure 6.7 shows a visualization of some of these distributions over latents.

Noise on latents. To make the dataset slightly more realistic, we get rid of the artificial grid-like
structure of the latents by adding noise to it. This procedure transforms Z into a new support Zα,
where α is the noise level. Formally, Zα :=

⋃
z∈Z{z +uz} where the uz are i.i.d samples from the

uniform over the hypercube[
−α∆z1

2 , α
∆z1

2

]
×
[
−α∆z2

2 , α
∆z2

2

]
× . . .×

[
−α∆z6

2 , α
∆z6

2

]
,

where ∆zi denotes the gap between contiguous values of the factor zi. When α = 0, no noise is
added and the support Z is unchanged, i.e., Z1 = Z . As long as α ∈ [0, 1], contiguous points in Z
cannot be interchanged in Zα. We also clarify that the ground-truth mapping fθ is modified to fθ,α

consequently: for all x ∈ X , fθ,α(x) := fθ(x) + uz. We emphasize that the uz are sampled only
once such that fθ,α(x) is actually a deterministic mapping.

Varying correlations. To verify that our approach is robust to correlations in the latents, we
construct p(z) as follows: We consider a Gaussian density centred at 0 with covariance Σi,j :=
ρ+ 1(i = j)(1− ρ). Then, we evaluate this density on the points of Zα and renormalize to have a
well-defined probability distribution over Zα. We denote by pα,ρ(z) the distribution obtain by this
construction.

In the top rows of Figures 6.4 & 6.6, the latents are sampled from pα=1,ρ(z) and ρ varies between
0 and 0.99. In the bottom rows of Figures 6.4 & 6.6, the latents are sampled from pα,ρ=0.9(z) and α
varies from 0 to 1.

D.2.2. Metrics. We evaluate disentanglement via the mean correlation coefficient [Hyvarinen
and Morioka, 2016, Khemakhem et al., 2020a] which is computed as follows: The Pearson
correlation matrix C between the ground-truth features and learned ones is computed. Then,
MCC = maxπ∈permutations

1
m

∑m
j=1 |Cj,π(j)|. We also evaluate linear equivalence by performing lin-

ear regression to predict the ground-truth factors from the learned ones, and report the mean of the
Pearson correlations between the ground-truth latents and the learned ones. This metric is known as
the coefficient of multiple correlations, R, and turns out to be the square-root of the more widely
known coefficient of determination, R2. The advantage of using R over R2 is that we always have
MCC ≤ R.

D.2.3. Architecture, inner solver & hyperparameters. We use the four-layer convolutional
neural network typically used in the disentanglement literature [Locatello et al., 2019]. As men-
tioned in Section 6.3.4, the norm of the representation fθ̂(x) must be controlled to make sure
the regularization remains effective. To do so, we apply batch normalization [Ioffe and Szegedy,
2015] at the very last layer of the neural network and do not learn its scale and shift parameters.
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Figure 6.7. Visualization of the various distributions over latents. For 4 combinations of
correlation levels and noise levels, we show the 2-dimensional histograms of samples from the
corresponding distribution over latents described in Appendix D.2.1. Each histogram shows the
joint distribution over two latent factors.

Empirically, we do see the expected behavior that, without any normalization, the norm of fθ̂(x)
explodes as we train, leading to instabilities and low sparsity.

In these experiments, the distribution p(y;η) used for learning is a Gaussian with fixed variance.
In that case, the inner problem of Section 6.3.4 reduces to Lasso regression. Computing the
hypergradient w.r.t. θ requires solving this inner problem. To do so, we use Proximal Coordinate
Descent [Tseng, 2001, Richtárik and Takáč, 2014].

Details on λ/λmax. In Figures 6.4, & 6.6, we explore various levels of regularization λ. In
our implementation, we set λ = ϵλmax where ϵ ≥ 0. In inner-Lasso, we set λmax := 1

n
∥F⊤y∥∞
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(F ∈ Rn×m is the design matrix of the features of the samples of a task), while in inner-Ridge
we have λmax := 1

n
∥F ∥2. Note that this means λ is dynamically changing as we train because F

changes. However we never backpropagate through λmax (we block the gradient from flowing).
Thus, in all figures, we report ϵ = λ/λmax.

D.2.4. Experiments violating assumptions. In this section, we explore variations of the experi-
ments of Section 6.5, but this time the assumptions of Theorem 6.1 are violated.

Figure 6.8 shows different degrees of violation of Assumption 6.7. We consider the cases
where S := {{1, 2}, {3, 4}, {5, 6}} (block size = 2), S := {{1, 2, 3}, {4, 5, 6}} (block size = 3) and
S := {{1, 2, 3, 4, 5, 6}} (block size = 6). Note that the latter case corresponds to having no sparsity
at all in the ground-truth model, i.e., all tasks require all features. The reader can verify that these
three cases indeed violate Assumption 6.7. In all cases, the distribution p(S) puts uniform mass over
its support S. Similarly to the experiments from the main text, w := w̄ ⊙ s, where w̄ ∼ N (0, I)
and s ∼ p(S) (s is the binary representation of the set S). Overall, we can see that inner-Lasso does
not perform as well when Assumption 6.7 is violated. For example, when there is no sparsity at all
(block size = 6), inner-Lasso performs poorly and is even surpassed by inner-Ridge. Nevertheless,
for mild violations (block size = 2), disentanglement (as measured by MCC) remains reasonably
high. We further notice that all methods obtain very good R score in all settings. This is expected in
light of Theorem 6.2, which guarantees identifiability up to linear transformation without requiring
Assumption 6.7.

Figure 6.9 presents experiments that are identitical to those of Figure 6.4 in the main text,
except for how w is generated. Here, the components of w are sampled independently according to
wi ∼ Laplace(µ = 0, b = 1). We note that, under this process, the probability that wi = 0 is zero.
This means all features are useful and Assumption 6.7 is violated. That being said, due to the fat tail
behavior of the Laplacian distribution, many components ofw will be close to zero (relatively to
its variance). Thus, this can be thought of as a weaker form of sparsity where many features are
relatively unimportant. Figure 6.9 shows that inner-Lasso can still disentangle very well. In fact, the
performance is very similar to the experiments that presented actual sparsity (Figure 6.4).

D.2.5. Experiments with regularization in the outer problem. Theorem 6.4 presented an al-
ternative optimization problem to that of Theorem 6.1 to learn a disentangled representation.
Appendix B.3 presented a tractable relaxation of this alternative. The essential operational differ-
ence is that the sparsity regulatization appears in the outer problem instead of the inner problem.
Figure 6.10 shows this alternative works as well empirically. Details in the caption.

D.2.6. Visual evaluation. Figures 6.11, 6.12, 6.13 & 6.14 show how various learned representations
respond to changing a single factor of variation in the image [Higgins et al., 2017, Figure 7.A.B].
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Figure 6.8. Disentanglement (MCC, top) and prediction (R Score, bottom) performances for
inner-Lasso, inner-Ridge and inner-Ridge combined with ICA as a function of the regularization
parameter. The metrics are plotted for multiple value of block size for the support. Block size = 6
corresponds to no sparsity in the ground truth coefficients.

We see what was expected: the higher the MCC, the more disentangled the learned features appear,
thus validating MCC as a good metric for disentanglement. See captions for details.

D.2.7. Additional metrics for disentanglement. We implemented metrics from the DCI frame-
work [Eastwood and Williams, 2018] to evaluate disentanglement. 1) DCI-Disentanglement: How
many ground truth latent components are related to a particular component of the learned latent rep-
resentation; 2) DCI-Completeness: How many learned latent components are related to a particular
component of the ground truth latent representation. Note that for the definition of disentanglement
used in the present work Definition 6.1, we want both DCI-disentanglement and DCI-completeness
to be high.

The DCI framework requires a matrix of relative importance. In our implementation, this matrix
is the coefficient matrix resulting from performing linear regression with inputs as the learned latent
representation fθ̂(x) and targets as the ground truth latent representation fθ(x), and denote the
solution as the matrix W . Further, denote by I = |W | as the importance matrix, as Ii,j denotes the
relevance of inferred latent fθ̂(x)j for predicting the true latent fθ(x)i.

Now, for computing DCI-disentanglement, we normalize each row of the importance matrix
I[i, :] by its sum so that it represents a probability distribution. Then disentanglement is given by
1
m
×
∑m

i 1−H(I[i, :]), where H denotes the entropy of a distribution. Note that for the desired
case of each ground truth latent component being explained by a single inferred latent component,
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Figure 6.9. Same experiment as Figure 6.4, but the task coefficient vectors w are sampled from a
Laplacian distribution (instead of what was described in Appendix D.2.1). Performance is barely
affected, showing some amount of robustness to violations of Assumption 6.7.

we would have H(I[i, :]) = 0 as we have a one-hot vector for the probability distribution. Similarly,
for the case of each ground truth latent component being explained uniformly by all the inferred
latents, H(I[i, :]) would be maximized and hence the DCI score would be minimized. To compute
the DCI-completeness, we first normalize each column of the importance matrix I[:, j] by its sum
so that it represents a probability distribution and then compute 1

m
×
∑m

i 1−H(I[:, j]).
Figure 6.15 shows the results for the 3D Shapes experiments (Section 6.5) with the DCI metric

to evaluate disentanglement. Notice that we find the same trend as we had with the MCC metric 6.4,
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Figure 6.10. outer-Lasso solves Problem (6.62) (with regularization in the outer problem) while
outer-Ridge solves the same problem but with an L2-norm instead of L2,1. The method outer-Ridge
+ ICA is outer-Ridge with an additional step of linear ICA on top of the learned representation. The
results obtained are very similar to the main results of Figures 6.4, 6.6. In this dataset, the latents
are sampled from pα=1,ρ=0.9(z) (See Appendix D.2.1) and the weight coefficients are sampled from
the binomial-Gaussian process described in Appendix D.2.1.

that inner-Lasso is more robust to correlation between the latent variables, and inner-Ridge + ICA
performance drops down significantly with increasing correlation.

D.3. Meta-learning experiments

Experimental settings. We evaluate the performance of our meta-learning algorithm based
on a group-sparse SVM learners on the miniImageNet [Vinyals et al., 2016] dataset. Following
the standard nomenclature in few-shot classification [Hospedales et al., 2021] with k-shot N -way,
where N is the number of classes in each classification task, and k is the number of samples per
class in the training dataset Dtrain

t , we consider the experimental setting 5-shot 5-way. We use the
same residual network architecture as in [Lee et al., 2019], with 12 layers and a representation of
size p = 1.6× 104.

Technical details. The objective of Problem (6.10) is composed of a smooth term and block
separable non-smooth term, hence it can be solved efficiently using proximal block coordinate
descent [Tseng, 2001]. Although Theorem 6.1 is not directly applicable to the meta-learning
formulation proposed in this section, we conjecture that similar techniques could be reused to prove
an identifiability result in this setting. As in Section 6.3.4, the argmin differentiation of the solution
of Problem (6.10) can be done using implicit differentiation [Bertrand et al., 2022].
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Figure 6.11. Varying one factor at a time in the image and showing how the learned representation
varies in response. This representation was learned by inner-Lasso (best hyperparameter) on a
dataset with 0 correlation between latents and a noise scale of 1. The corresponding MCC is 0.99.
We can see that varying a single factor in the image always result in changing a single factor in the
learned representation.
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Figure 6.12. Varying one factor at a time in the image and showing how the learned representation
varies in response. This representation was learned without regularization of any kind (i.e., with
inner-Ridge with regularization coefficient equal to zero) on a dataset with 0 correlation between
and a noise scale of 1. The corresponding MCC is 0.63. We can see that varying a single factor in
the image result in changing multiple factors in the learned representation, i.e., the representation is
not disentangled.
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Figure 6.13. Varying one factor at a time in the image and showing how the learned representation
varies in response. This representation was learned with inner-Lasso (best hyperparameter) on a
dataset with correlation 0.9 between latents and a noise scale of 1. The corresponding MCC is 0.96.
Qualitatively, the representation appears to be well disentangled, but not as well as in Figure 6.11
(reflected by a drop in MCC of 0.03).
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Figure 6.14. Varying one factor at a time in the image and showing how the learned representation
varies in response. This representation was learned with inner-Ridge (best hyperparameter) on a
dataset with correlation 0.9 between latents and a noise scale of 1. The corresponding MCC is 0.79.
For most latent factors, we cannot identify a dominant feature, except maybe for background and
object colors. The representation appears more disentangled than Figure 6.12, but less disentangled
than Figure 6.13, as reflected by their corresponding MCC values.

277



0.0 0.01 0.03 0.1 0.3 1.0
λ/λmax

0.0

0.5

D
C

I-
D

is
en

ta
ng

le
m

en
t

Correlation = 0.0

0.0 0.01 0.03 0.1 0.3 1.0
λ/λmax

Correlation = 0.9

0.0 0.5 1.0
Correlation

Multiple correlation values

0.0 0.01 0.03 0.1 0.3 1.0
λ/λmax

0.0

0.5

D
C

I-
C

om
pl

et
en

es
s

Correlation = 0.0

0.0 0.01 0.03 0.1 0.3 1.0
λ/λmax

Correlation = 0.9

0.0 0.5 1.0
Correlation

Multiple correlation values

Figure 6.15. Disentanglement performance (DCI) for inner-Lasso, inner-Ridge and inner-Ridge
combined with ICA as a function of the regularization parameter (left and middle). The right
columns shows performance of the best hyperparameter for different values of correlation and noise.
The top row shows the results for the disentanglement metric of DCI and the bottom row shows the
results for the completeness metric of DCI.
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Prologue to the Fifth Contribution

Article Details
Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation
by Sébastien Lachapelle∗, Divyat Mahajan∗, Ioannis Mitliagkas and Simon Lacoste-Julien. This
work was published at the Thirty-seventh Conference on Neural Information Processing Systems
(NeurIPS 2023) with an oral.
∗Equal contributions.

Contributions of the Authors
Sébastien Lachapelle developed the ideas, the proofs, wrote the first draft and contributed to the

experimental design. Divyat Mahajan led the experiments and contributed to the writing. Ioannis
Mitliagkas contributed to the writing. Simon Lacoste-Julien provided supervison, contributed to
the writing and contributed to some technical aspects of the theory.

Context and Limitations
Similarly to the previous contribution, this work was born from a desire to show rigorously

how disentanglement can help for some downstream goal. Here, the goal is inspired from recent
strides in generative models which now appear to be able to generate realistic images resulting
from a combination of concepts that was not present in the training data [Ramesh et al., 2022,
Rombach et al., 2022]. How and when is it possible to generate images that were not present
in the support of the training distribution but that are on the manifold of reasonable images? To
start answering this question, we propose additivity as an assumption on the mixing function and
show that, under further regularity conditions, it is sufficient to obtain both disentanglement and
compositional generalization (Cartesian-product extrapolation in the paper). Also see Section 8.2.2
from Chapter 8 for a formalization of this goal of extrapolation within statistical decision theory.

We also motivate our contribution as a first step towards explaining why object-centric represen-
tation learning (OCRL) such as Slot-Attention [Locatello et al., 2020c] can perform segmentation



without any segmentation labels, i.e. without supervision. Although additive decoders are a crude
simplification of decoders actually used in OCRL, we believe this analysis illustrates how identifia-
bility analyses can be used to shed light on intriguing phenomena observed in practice. We expand
on this point further in Chapter 9.

The strong disentanglement and extrapolation guarantees of additive decoders come at the cost of
low expressivity. For instance, they cannot represent simple datasets with occlusion (Appendix A.12)
or with a variable number of objects, unlike OCRL decoders. The theory also assumes the number
of latent factors to be known, which do not reflect practice. Hopefully, future analyses will shed
light on these open questions.

Recent developments
The work of Wiedemer et al. [2023], which was also presented at NeurIPS 2023, also studies

compositionality in a similar context. Essentially, they show that, if two functions of the form
c(f (B1)(zB1), ...,f (Bℓ)(zBℓ

)) and c(f̂ (B1)(zB1), ..., f̂ (Bℓ)(zBℓ
)) are equal on a set Z train, they must

be equal on its Cartesian-product extension (they use a terminology different from ours). Note that
c is known here, i.e. “c = ĉ”. The key difference with our work is that there is no discussion about
disentanglement and identifiability, since z is assumed to be observed.

In a follow-up work which got an oral at ICLR 2024 [Wiedemer et al., 2024], the authors tackle
the problem of disentanglement. They leverage the identifiability of compositional decoders shown
by Brady et al. [2023] and the fact that these are additive to show that both disentanglement and
compositional generalization are possible. While our identifiability result is stronger in the sense that
additive decoders are strictly more expressive than compositional ones (Appendix A.3), Wiedemer
et al. [2024] proposes an additional regularizer which enables extrapolation of the encoder, which
we did not.
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Chapter 7

Additive Decoders for Latent Variables Identification
and Cartesian-Product Extrapolation

Abstract
We tackle the problems of latent variables identification and “out-of-support” image generation

in representation learning. We show that both are possible for a class of decoders that we call
additive, which are reminiscent of decoders used for object-centric representation learning (OCRL)
and well suited for images that can be decomposed as a sum of object-specific images. We provide
conditions under which exactly solving the reconstruction problem using an additive decoder is
guaranteed to identify the blocks of latent variables up to permutation and block-wise invertible
transformations. This guarantee relies only on very weak assumptions about the distribution of the
latent factors, which might present statistical dependencies and have an almost arbitrarily shaped
support. Our result provides a new setting where nonlinear independent component analysis (ICA)
is possible and adds to our theoretical understanding of OCRL methods. We also show theoretically
that additive decoders can generate novel images by recombining observed factors of variations in
novel ways, an ability we refer to as Cartesian-product extrapolation. We show empirically that
additivity is crucial for both identifiability and extrapolation on simulated data.

7.1. Introduction
The integration of connectionist and symbolic approaches to artificial intelligence has been

proposed as a solution to the lack of robustness, transferability, systematic generalization and
interpretability of current deep learning algorithms [Marcus, 2001, Bengio et al., 2013, d’Avila
Garcez and Lamb, 2020, Greff et al., 2020, Goyal and Bengio, 2021] with justifications rooted in
cognitive sciences [Fodor and Pylyshyn, 1988, Harnad, 1990, Lake et al., 2017] and causality [Pearl,
2019, Schölkopf et al., 2021]. However, the problem of extracting meaningful symbols grounded in
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Figure 7.1. Left: Additive decoders model the additive structure of scenes composed of multiple
objects. Right: Additive decoders allow to generate novel images never seen during training via
Cartesian-product extrapolation (Corollary 7.1). Purple regions correspond to latents/observations
seen during training. The blue regions correspond to the Cartesian-product extension. The middle
set is the manifold of images of balls. In this example, the learner never saw both balls high, but these
can be generated nevertheless thanks to the additive nature of the scene. Details in Section 7.3.2.

low-level observations, e.g. images, is still open. This problem is sometime referred to as disentan-

glement [Bengio et al., 2013, Locatello et al., 2019] or causal representation learning [Schölkopf
et al., 2021]. The question of identifiability in representation learning, which originated in works on
nonlinear independent component analysis (ICA) [Taleb and Jutten, 1999, Hyvarinen and Morioka,
2017, Hyvärinen et al., 2019, Khemakhem et al., 2020a], has been the focus of many recent ef-
forts [Locatello et al., 2020a, Von Kügelgen et al., 2021, Gresele et al., 2021, Lippe et al., 2022,
Ahuja et al., 2023, Buchholz et al., 2022, Lachapelle et al., 2023a]. The mathematical results of
these works provide rigorous explanations for when and why symbolic representations can be
extracted from low-level observations. In a similar spirit, Object-centric representation learning

(OCRL) aims to learn a representation in which the information about different objects are encoded
separately [Eslami et al., 2016, Greff et al., 2016, Burgess et al., 2019, Greff et al., 2019, Engelcke
et al., 2020, Locatello et al., 2020c, Dittadi et al., 2022]. These approaches have shown impressive
results empirically, but the exact reason why they can perform this form of segmentation without
any supervision is poorly understood.

7.1.1. Contributions

Our first contribution is an analysis of the identifiability of a class of decoders we call additive

(Definition 7.1). Essentially, a decoder f(z) acting on a latent vector z ∈ Rdz to produce an
observation x is said to be additive if it can be written as f(z) =

∑
B∈B f

(B)(zB) where B is a
partition of {1, . . . , dz}, f (B)(zB) are “block-specific” decoders and the zB are non-overlapping
subvectors of z. This class of decoder is particularly well suited for images x that can be expressed
as a sum of images corresponding to different objects (left of Figure 7.1). Unsurprisingly, this
class of decoder bears similarity with the decoding architectures used in OCRL (Section 7.2),
which already showed important successes at disentangling objects without any supervision. Our
identifiability results provide conditions under which exactly solving the reconstruction problem with
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an additive decoder identifies the latent blocks zB up to permutation and block-wise transformations
(Theorems 7.1 & 7.2). We believe these results will be of interest to both the OCRL community,
as they partly explain the empirical success of these approaches, and to the nonlinear ICA and
disentanglement community, as it provides an important special case where identifiability holds.
This result relies on the block-specific decoders being “sufficiently nonlinear” (Assumption 7.2)
and requires only very weak assumptions on the distribution of the ground-truth latent factors of
variations. In particular, these factors can be statistically dependent and their support can be (almost)
arbitrary.

Our second contribution is to show theoretically that additive decoders can generate images never
seen during training by recombining observed factors of variations in novel ways (Corollary 7.1).
To describe this ability, we coin the term “Cartesian-product extrapolation” (right of Figure 7.1).
We believe the type of identifiability analysis laid out in this work to understand “out-of-support”
generation is novel and could be applied to other function classes or learning algorithms such as
DALLE-2 [Ramesh et al., 2022] and Stable Diffusion [Rombach et al., 2022] to understand their
apparent creativity and hopefully improve it.

Both latent variables identification and Cartesian-product extrapolation are validated experimen-
tally on simulated data (Section 7.4). More specifically, we observe that additivity is crucial for
both by comparing against a non-additive decoder which fails to disentangle and extrapolate.

Notation. Scalars are denoted in lower-case and vectors in lower-case bold, e.g. x ∈ R and
x ∈ Rn. We maintain an analogous notation for scalar-valued and vector-valued functions, e.g. f
and f . The ith coordinate of the vector x is denoted by xi. The set containing the first n integers
excluding 0 is denoted by [n]. Given a subset of indices S ⊆ [n], xS denotes the subvector consisting
of entries xi for i ∈ S. Given a function f(xS) ∈ Rm with input xS , the derivative of f w.r.t. xi

is denoted by Dif(xS) ∈ Rm and the second derivative w.r.t. xi and xi′ is D2
i,i′f(xS) ∈ Rm. See

Table 7.2 in appendix for more.
Code: Our code repository can be found at this link.

7.2. Background & Literature review
Identifiability of latent variable models. The problem of latent variables identification can

be best explained with a simple example. Suppose observations x ∈ Rdx are generated i.i.d. by
first sampling a latent vector z ∈ Rdz from a distribution Pz and feeding it into a decoder function
f : Rdz → Rdx , i.e. x = f(z). By choosing an alternative model defined as f̂ := f ◦ v and
ẑ := v−1(z) where v : Rdz → Rdz is some bijective transformation, it is easy to see that the
distributions of x̂ = f̂(ẑ) and x are the same since f̂(ẑ) = f ◦ v(v−1(z)) = f(z). The problem
of identifiability is that, given only the distribution over x, it is impossible to distinguish between
the two models (f , z) and (f̂ , ẑ). This is problematic when one wants to discover interpretable

283

https://github.com/divyat09/additive_decoder_extrapolation/


factors of variations since z and ẑ could be drastically different. There are essentially two strategies
to go around this problem: (i) restricting the hypothesis class of decoders f̂ [Taleb and Jutten,
1999, Gresele et al., 2021, Leeb et al., 2021, Moran et al., 2022, Buchholz et al., 2022, Zheng
et al., 2022], and/or (ii) restricting/adding structure to the distribution of ẑ [Hyvärinen et al., 2019,
Locatello et al., 2020b, Lachapelle et al., 2022, Lippe et al., 2022]. By doing so, the hope is
that the only bijective mappings v keeping f̂ and ẑ into their respective hypothesis classes will
be trivial indeterminacies such as permutations and element-wise rescalings. Our contribution,
which is to restrict the decoder function f̂ to be additive (Definition 7.1), falls into the first
category. Other restricted function classes for f proposed in the literature include post-nonlinear
mixtures [Taleb and Jutten, 1999], local isometries [Donoho and Grimes, 2003b,a, Horan et al.,
2021a], conformal and orthogonal maps [Gresele et al., 2021, Reizinger et al., 2022, Buchholz et al.,
2022] as well as various restrictions on the sparsity of f [Moran et al., 2022, Zheng et al., 2022,
Brady et al., 2023, Xi and Bloem-Reddy, 2023]. Methods that do not restrict the decoder must
instead restrict/structure the distribution of the latent factors by assuming, e.g., sparse temporal
dependencies [Hyvarinen and Morioka, 2017, Klindt et al., 2021, Lachapelle et al., 2022, Lachapelle
and Lacoste-Julien, 2022], conditionally independent latent variables given an observed auxiliary
variable [Hyvärinen et al., 2019, Khemakhem et al., 2020a], that interventions targeting the latent
factors are observed [Lachapelle et al., 2022, Lippe et al., 2022, 2023b, Brehmer et al., 2022, Ahuja
et al., 2022b, 2023, Squires et al., 2023, Buchholz et al., 2023, von Kügelgen et al., 2023, Zhang
et al., 2023, Jiang and Aragam, 2023], or that the support of the latents is a Cartesian-product [Wang
and Jordan, 2022, Roth et al., 2023]. In contrast, our result makes very mild assumptions about
the distribution of the latent factors, which can present statistical dependencies, have an almost
arbitrarily shaped support and does not require any interventions. Additionally, none of these works
provide extrapolation guarantees as we do in Section 7.3.2.

Relation to nonlinear ICA. Hyvärinen and Pajunen [1999] showed that the standard nonlinear
ICA problem where the decoder f is nonlinear and the latent factors zi are statistically independent

is unidentifiable. This motivated various extensions of nonlinear ICA where more structure on
the factors is assumed [Hyvarinen and Morioka, 2016, 2017, Hyvärinen et al., 2019, Khemakhem
et al., 2020a,b, Hälvä et al., 2021]. Our approach departs from the standard nonlinear ICA problem
along three axes: (i) we restrict the mixing function to be additive, (ii) the factors do not have to
be necessarily independent, and (iii) we can identify only the blocks zB as opposed to each zi

individually up to element-wise transformations, unless B = {{1}, ..., {dz}} (see Section 7.3.1).
Object-centric representation learning (OCRL). Lin et al. [2020] classified OCRL methods

in two categories: scene mixture models [Greff et al., 2016, 2017, 2019, Locatello et al., 2020c]
& spatial-attention models [Eslami et al., 2016, Crawford and Pineau, 2019, Burgess et al., 2019,
Engelcke et al., 2020]. Additive decoders can be seen as an approximation to the decoding
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architectures used in the former category, which typically consist of an object-specific decoder f (obj)

acting on object-specific latent blocks zB and “mixed” together via a masking mechanism m(B)(z)
which selects which pixel belongs to which object. More precisely,

f(z) =
∑
B∈B

m(B)(z)⊙ f (obj)(zB) , wherem(B)
k (z) = exp(ak(zB))∑

B′∈B exp(ak(zB′)) , (7.1)

and where B is a partition of [dz] made of equal-size blocks B and a : R|B| → Rdx outputs a score
that is normalized via a softmax operation to obtain the masks m(B)(z). Many of these works
also present some mechanism to select dynamically how many objects are present in the scene and
thus have a variable-size representation z, an important technical aspect we omit in our analysis.
Empirically, training these decoders based on some form of reconstruction objective, probabilistic
or not, yields latent blocks zB that represent the information of individual objects separately. We
believe our work constitutes a step towards providing a mathematically grounded explanation for
why these approaches can perform this form of disentanglement without supervision (Theorems 7.1
& 7.2). Many architectural innovations in scene mixture models concern the encoder, but our analysis
focuses solely on the structure of the decoder f(z), which is a shared aspect across multiple methods.
Generalization capabilities of object-centric representations were studied empirically by Dittadi
et al. [2022] but did not cover Cartesian-product extrapolation (Corollary 7.1) on which we focus
here.

Diagonal Hessian penalty Peebles et al. [2020]. Additive decoders are also closely related to
the penalty introduced by Peebles et al. [2020] which consists in regularizing the Hessian of the
decoder to be diagonal. In Appendix A.2, we show that “additivity" and “diagonal Hessian" are
equivalent properties. They showed empirically that this penalty can induce disentanglement on
datasets such as CLEVR [Johnson et al., 2016], which is a standard benchmark for OCRL, but did
not provide any formal justification. Our work provides a rigorous explanation for these successes
and highlights the link between the diagonal Hessian penalty and OCRL.

Compositional decoders [Brady et al., 2023]. Compositional decoders were recently in-
troduced by Brady et al. [2023] as a model for OCRL methods with identifiability guarantees.
A decoder f is said to be compositional when its Jacobian Df satisfies the following property
everywhere: For all i ∈ [dz] and B ∈ B, DBfi(z) ̸= 0 =⇒ DBcfi(z) = 0, where Bc := [dz] \B.
In other words, each xi can locally depend solely on one block zB (this block can change for
different z). In Appendix A.3, we show that compositional C2 decoders are additive. Furthermore,
Example 7.3 shows a decoder that is additive but not compositional, which means that additive
C2 decoders are strictly more expressive than compositional C2 decoders. Another important
distinction with our work is that we consider more general supports for z and provide a novel
extrapolation analysis. That being said, our identifiability result does not supersede theirs since they
assume only C1 decoders while our theory assumes C2.
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Extrapolation. Du and Mordatch [2019] studied empirically how one can combine energy-
based models for what they call compositional generalization, which is similar to our notion of
Cartesian-product extrapolation, but suppose access to datasets in which only one latent factor
varies and do not provide any theory. Webb et al. [2020] studied extrapolation empirically and
proposed a novel benchmark which does not have an additive structure. Besserve et al. [2021]
proposed a theoretical framework in which out-of-distribution samples are obtained by applying a
transformation to a single hidden layer inside the decoder network. Krueger et al. [2021b] introduced
a domain generalization method which is trained to be robust to tasks falling outside the convex hull
of training distributions. Extrapolation in text-conditioned image generation was recently discussed
by Wang et al. [2023].

7.3. Additive decoders for disentanglement & extrapolation
Our theoretical results assume the existence of some data-generating process describing how

the observations x are generated and, importantly, what are the “natural” factors of variations.

Assumption 7.1 (Data-generating process). The set of possible observations is given by a lower

dimensional manifold f(Z test) embedded in Rdx where Z test is an open set of Rdz and f : Z test →
Rdx is a C2-diffeomorphism onto its image. We will refer to f as the ground-truth decoder. At

training time, the observations are i.i.d. samples given by x = f(z) where z is distributed

according to the probability measure Ptrain
z with support Z train ⊆ Z test. Throughout, we assume that

Z train is regularly closed (Definition 7.6).

Intuitively, the ground-truth decoder f is effectively relating the “natural factors of variations”
z to the observations x in a one-to-one fashion. The map f is a C2-diffeomorphism onto its image,
which means that it is C2 (has continuous second derivative) and that its inverse (restricted to the
image of f ) is also C2. Analogous assumptions are very common in the literature on nonlinear ICA
and disentanglement [Hyvärinen et al., 2019, Khemakhem et al., 2020a, Lachapelle et al., 2022,
Ahuja et al., 2022a]. Mansouri et al. [2022] pointed out that the injectivity of f is violated when
images show two objects that are indistinguishable, an important practical case that is not covered
by our theory.

We emphasize the distinction between Z train, which corresponds to the observations seen during
training, and Z test, which corresponds to the set of all possible images. The case where Z train ̸= Z test

will be of particular interest when discussing extrapolation in Section 7.3.2. The “regularly closed”
condition on Z train is mild, as it is satisfied as soon as the distribution of z has a density w.r.t. the
Lebesgue measure on Rdz . It is violated, for example, when z is a discrete random vector. Figure 7.2
illustrates this assumption with simple examples.

Objective. Our analysis is based on the simple objective of reconstructing the observations x by
learning an encoder ĝ : Rdx → Rdz and a decoder f̂ : Rdz → Rdx . Note that we assumed implicitly
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that the dimensionality of the learned representation matches the dimensionality of the ground-truth.
We define the set of latent codes the encoder can output when evaluated on the training distribution:

Ẑ train := ĝ(f(Z train)) . (7.2)

When the images of the ground-truth and learned decoders match, i.e. f(Z train) = f̂(Ẑ train), which
happens when the reconstruction task is solved exactly, one can define the map v : Ẑ train → Z train as

v := f−1 ◦ f̂ . (7.3)

This function is going to be crucial throughout the work, especially to define B-disentanglement
(Definition 7.3), as it relates the learned representation to the ground-truth representation.

Before introducing our formal definition of additive decoders, we introduce the following
notation: Given a set Z ⊆ Rdz and a subset of indices B ⊆ [dz], let us define ZB to be the
projection of Z onto dimensions labelled by the index set B. More formally,

ZB := {zB | z ∈ Z} ⊆ R|B| . (7.4)

Intuitively, we will say that a decoder is additive when its output is the summation of the outputs
of “object-specific” decoders that depend only on each latent block zB. This captures the idea that
an image can be seen as the juxatoposition of multiple images which individually correspond to
objects in the scene or natural factors of variations (left of Figure 7.1).

Definition 7.1 (Additive functions). Let B be a partition of [dz]1. A function f : Z → Rdx is said

to be additive if there exist functions f (B) : ZB → Rdx for all B ∈ B such that

∀z ∈ Z,f(z) =
∑
B∈B

f (B)(zB) . (7.5)

This additivity property will be central to our analysis as it will be the driving force of identifia-
bility (Theorem 7.1 & 7.2) and Cartesian-product extrapolation (Corollary 7.1).

Remark 7.1. Suppose we have x = σ(
∑

B∈B f
(B)(zB)) where σ is a known bijective function. For

example, if σ(y) := exp(y) (component-wise), the decoder can be thought of as being multiplicative.

Our results still apply since we can simply transform the data doing x̃ := σ−1(x) to recover the

additive form x̃ =
∑

B∈B f
(B)(zB).

Differences with OCRL in practice. We point out that, although the additive decoders make
intuitive sense for OCRL, they are not expressive enough to represent the “masked decoders”
typically used in practice (Equation (7.1)). The lack of additivity stems from the normalization in
the masksm(B)(z). We hypothesize that studying the simpler additive decoders might still reveal
interesting phenomena present in modern OCRL approaches due to their resemblance. Another
difference is that, in practice, the same object-specific decoder f (obj) is applied to every latent block

1Without loss of generality, we assume that the partition B is contiguous, i.e. each B ∈ B can be written as B =
{i + 1, i + 2, . . . , i + |B|}.
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zB. Our theory allows for these functions to be different, but also applies when functions are the
same. Additionally, this parameter sharing across f (B) enables modern methods to have a variable
number of objects across samples, an important practical point our theory does not cover.

7.3.1. Identifiability analysis

We now study the identifiability of additive decoders and show how they can yield disentangle-
ment. Our definition of disentanglement will rely on partition-respecting permutations:

Definition 7.2 (Partition-respecting permutations). Let B be a partition of {1, ..., dz}. A permutation

π over {1, ..., dz} respects B if, for all B ∈ B, π(B) ∈ B.

Essentially, a permutation that respects B is one which can permute blocks of B and permute
elements within a block, but cannot “mix” blocks together. We now introduce B-disentanglement.

Definition 7.3 (B-disentanglement). A learned decoder f̂ : Rdz → Rdx is said to be B-disentangled
w.r.t. the ground-truth decoder f when f(Z train) = f̂(Ẑ train) and the mapping v := f−1 ◦ f̂ is a

diffeomorphism from Ẑ train to Z train satisfying the following property: there exists a permutation π

respecting B such that, for all B ∈ B, there exists a function v̄π(B) : Ẑ train
B → Z train

π(B) such that, for

all z ∈ Ẑ train, vπ(B)(z) = v̄π(B)(zB). In other words, vπ(B)(z) depends only on zB.

Thus, B-disentanglement means that the blocks of latent dimensions zB are disentangled from
one another, but that variables within a given block might remain entangled. Note that, unless the
partition is B = {{1}, . . . , {dz}}, this corresponds to a weaker form of disentanglement than what
is typically seeked in nonlinear ICA, i.e. recovering each variable individually.

Example 7.1. To illustrate B-disentanglement, imagine a scene consisting of two balls moving

around in 2D where the “ground-truth” representation is given by z = (x1, y1, x2, y2) where

zB1 = (x1, y1) and zB2 = (x2, y2) are the coordinates of each ball (here, B := {{1, 2}, {3, 4}}).
In that case, a learned representation is B-disentangled when the balls are disentangled from one

another. However, the basis in which the position of each ball is represented might differ in both

representations.

Our first result (Theorem 7.1) shows a weaker form of disentanglement we call local B-
disentanglement. This means the Jacobian matrix of v, Dv, has a “block-permutation” structure
everywhere.

Definition 7.4 (Local B-disentanglement). A learned decoder f̂ : Rdz → Rdx is said to be locally
B-disentangled w.r.t. the ground-truth decoder f when f(Z train) = f̂(Ẑ train) and the mapping

v := f−1 ◦ f̂ is a diffeomorphism from Ẑ train to Z train with a mapping v : Ẑ train → Z train satisfying

the following property: for all z ∈ Ẑ train, there exists a permutation π respecting B such that, for

all B ∈ B, the columns of Dvπ(B)(z) ∈ R|B|×dz outside block B are zero.

In Appendix A.4, we provide three examples where local disentanglement holds but not global
disentanglement. The first one illustrates how having a disconnected support can allow for a
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permutation π (from Definition 7.4) that changes between disconnected regions of the support. The
last two examples show how, even if the permutation stays the same throughout the support, we can
still violate global disentanglement, even with a connected support.

We now state the main identifiability result of this work which provides conditions to guarantee
local disentanglement. We will then see how to go from local to global disentanglement in the
subsequent Theorem 7.2. For pedagogical reasons, we delay the formalization of the sufficient
nonlinearity Assumption 7.2 on which the result crucially relies.

Theorem 7.1 (Local disentanglement via additive decoders). Suppose that the data-generating

process satisfies Assumption 7.1, that the learned decoder f̂ : Rdz → Rdx is a C2-diffeomorphism,

that the encoder ĝ : Rdx → Rdz is continuous, that both f and f̂ are additive (Definition 7.1)

and that f is sufficiently nonlinear as formalized by Assumption 7.2. Then, if f̂ and ĝ solve the

reconstruction problem on the training distribution, i.e. Etrain||x− f̂(ĝ(x))||2 = 0, we have that f̂

is locally B-disentangled w.r.t. f (Definition 7.4).

The proof of Theorem 7.1, which can be found in Appendix A.5, is inspired from Hyvärinen
et al. [2019]. The essential differences are that (i) they leverage the additivity of the conditional log-
density of z given an auxiliary variable u (i.e. conditional independence) instead of the additivity of
the decoder function f , (ii) we extend their proof techniques to allow for “block” disentanglement,
i.e. when B is not the trivial partition {{1}, . . . , {dz}}, (iii) the asssumption “sufficient variability”
of the prior p(z | u) of Hyvärinen et al. [2019] is replaced by an analogous assumption of “sufficient
nonlinearity” of the decoder f (Assumption 7.2), and (iv) we consider much more general supports
Z train which makes the jump from local to global disentanglement less direct in our case.

The identifiability-expressivity trade-off. The level of granularity of the partition B controls
the trade-off between identifiability and expressivity: the finer the partition, the tighter the identifi-
ability guarantee but the less expressive is the function class. The optimal level of granularity is
going to depend on the application at hand. Whether B could be learned from data is left for future
work.

Sufficient nonlinearity. The following assumption is key in proving Theorem 7.2, as it
requires that the ground-truth decoder is “sufficiently nonlinear”. This is reminiscent of the
“sufficient variability” assumptions found in the nonlinear ICA litterature, which usually concerns
the distribution of the latent variable z as opposed to the decoder f [Hyvarinen and Morioka, 2016,
2017, Hyvärinen et al., 2019, Khemakhem et al., 2020a,b, Lachapelle et al., 2022, Zheng et al.,
2022]. We clarify this link in Appendix A.6 and provide intuitions why sufficient nonlinearity can
be satisfied when dx ≫ dz.
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Assumption 7.2 (Sufficient nonlinearity of f ). Let q := dz +
∑

B∈B
|B|(|B|+1)

2 . For all z ∈ Z train, f

is such that the following matrix has linearly independent columns (i.e. full column-rank):

W (z) :=
[[
Dif

(B)(zB)
]

i∈B

[
D2

i,i′f (B)(zB)
]

(i,i′)∈B2
≤

]
B∈B
∈ Rdx×q , (7.6)

where B2
≤ := B2 ∩ {(i, i′) | i′ ≤ i}. Note this implies dx ≥ q.

The following example shows that Theorem 7.1 does not apply if the ground-truth decoder f is
linear. If that was the case, it would contradict the well known fact that linear ICA with independent
Gaussian factors is unidentifiable.

Example 7.2 (Importance of Assumption 7.2). Suppose x = f(z) = Az where A ∈ Rdx×dz is

full rank. Take f̂(z) := AV z and ĝ(x) := V −1A†x where V ∈ Rdz×dz is invertible and A† is

the left pseudo inverse ofA. By construction, we have that E[x− f̂(ĝ(x))] = 0 and f and f̂ are

B-additive because f(z) =
∑

B∈BA·,BzB and f̂(z) =
∑

B∈B(AV )·,BzB . However, we still have

that v(z) := f−1 ◦ f̂(z) = V z where V does not necessarily have a block-permutation structure,

i.e. no disentanglement. The reason we cannot apply Theorem 7.1 here is because Assumption 7.2 is

not satisfied. Indeed, the second derivatives of f (B)(zB) := A·,BzB are all zero and henceW (z)
cannot have full column-rank.

Example 7.3 (A sufficiently nonlinear f ). In Appendix A.7 we show numerically that the function

f(z) := [z1, z
2
1 , z

3
1 , z

4
1 ]⊤ + [(z2 + 1), (z2 + 1)2, (z2 + 1)3, (z2 + 1)4]⊤ (7.7)

is a diffeomorphism from the square [−1, 0]× [0, 1] to its image that satisfies Assumption 7.2.

Example 7.4 (Smooth balls dataset is sufficiently nonlinear). In Appendix A.7 we present a simple

synthetic dataset consisting of images of two colored balls moving up and down. We also verify

numerically that its underlying ground-truth decoder f is sufficiently nonlinear.

7.3.1.1. From local to global disentanglement. The following result provides additional assump-
tions to guarantee global disentanglement (Definition 7.3) as opposed to only local disentanglement
(Definition 7.4). See Appendix A.8 for its proof.

Theorem 7.2 (From local to global disentanglement). Suppose that all the assumptions of The-

orem 7.1 hold. Additionally, assume Z train is path-connected (Definition 7.8) and that the block-

specific decoders f (B) and f̂ (B) are injective for all blocks B ∈ B. Then, if f̂ and ĝ solve the

reconstruction problem on the training distribution, i.e. Etrain||x− f̂(ĝ(x))||2 = 0, we have that f̂

is (globally) B-disentangled w.r.t. f (Definition 7.3) and, for all B ∈ B,

f̂ (B)(zB) = f (π(B))(v̄π(B)(zB)) + c(B), for all zB ∈ Ẑ train
B , (7.8)

where the functions v̄π(B) are from Defintion 7.3 and the vectors c(B) ∈ Rdx are constants such that∑
B∈B c

(B) = 0. We also have that the functions v̄π(B) : Ẑ train
B → Z train

π(B) are C2-diffeomorphisms
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Figure 7.2. Illustrating regularly closed sets (Definition 7.6) and path-connected sets (Defini-
tion 7.8). Theorem 7.2 requires Z train to satisfy both properties.

and have the following form:

v̄π(B)(zB) = (fπ(B))−1(f̂ (B)(zB)− c(B)), for all zB ∈ Ẑ train
B . (7.9)

Equation (7.8) in the above result shows that each block-specific learned decoder f̂ (B) is “imi-
tating” a block-specific ground-truth decoder fπ(B). Indeed, the “object-specific” image outputted
by the decoder f̂ (B) evaluated at some zB ∈ Ẑ train

B is the same as the image outputted by f (B)

evaluated at v(zB) ∈ Z train
B , up to an additive constant vector c(B). These constants cancel each

other out when taking the sum of the block-specific decoders.
Equation (7.9) provides an explicit form for the function v̄π(B), which is essentially the learned

block-specific decoder composed with the inverse of the ground-truth block-specific decoder.
Additional assumptions to go from local to global. Assuming that the support of Ptrain

z , Z train,
is path-connected (see Definition 7.8 in appendix) is useful since it prevents the permutation π
of Definition 7.4 from changing between two disconnected regions of Ẑ train. See Figure 7.2 for an
illustration. In Appendix A.9, we discuss the additional assumption that each f (B) must be injective
and show that, in general, it is not equivalent to the assumption that

∑
B∈B f

(B) is injective.

7.3.2. Cartesian-product extrapolation

In this section, we show how a learned additive decoder can be used to generate images x that
are “out of support” in the sense that x ̸∈ f(Z train), but that are still on the manifold of “reasonable”
images, i.e. x ∈ f(Z test). To characterize the set of images the learned decoder can generate, we
will rely on the notion of “cartesian-product extension”, which we define next.

Definition 7.5 (Cartesian-product extension). Given a set Z ⊆ Rdz and partition B of [dz], we

define the Cartesian-product extension of Z as

CPEB(Z) :=
∏
B∈B

ZB ,where ZB := {zB | z ∈ Z}.
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Figure 7.3. Illustration of Definition 7.5.

It is indeed an extension of Z since Z ⊆
∏

B∈B ZB.

Let us define v̄ : CPEB(Ẑ train) → CPEB(Z train) to be the natural extension of the function v :
Ẑ train → Z train. More explicitly, v̄ is the “concatenation” of the functions v̄B given in Definition 7.3:

v̄(z)⊤ := [v̄B1(zπ−1(B1))⊤ · · · v̄Bℓ
(zπ−1(Bℓ))⊤] , (7.10)

where ℓ is the number of blocks in B. This map is a diffeomorphism because each v̄π(B) is a
diffeomorphism from Ẑ train

B to Z train
π(B) by Theorem 7.2.

We already know that f̂(z) = f ◦ v̄(z) for all z ∈ Ẑ train. The following result shows that this
equality holds in fact on the larger set CPEB(Ẑ train), the Cartesian-product extension of Ẑ train. See
right of Figure 7.1 for an illustration of the following corollary.

Corollary 7.1 (Cartesian-product extrapolation). Suppose the assumptions of Theorem 7.2 holds.

Then,

for all z ∈ CPEB(Ẑ train),
∑
B∈B

f̂ (B)(zB) =
∑
B∈B

f (π(B))(v̄π(B)(zB)) . (7.11)

Furthermore, if CPEB(Z train) ⊆ Z test, then f̂(CPEB(Ẑ train)) ⊆ f(Z test).
Equation (7.11) tells us that the learned decoder f̂ “imitates” the ground-truth f not just over

Ẑ train, but also over its Cartesian-product extension. This is important since it guarantees that we
can generate observations never seen during training as follows: Choose a latent vector znew that is
in the Cartesian-product extension of Ẑ train, but not in Ẑ train itself, i.e. znew ∈ CPEB(Ẑ train) \ Ẑ train.
Then, evaluate the learned decoder on znew to get xnew := f̂(znew). By Corollary 7.1, we know that
xnew = f ◦ v̄(znew), i.e. it is the observation one would have obtain by evaluating the ground-truth
decoder f on the point v̄(znew) ∈ CPEB(Z train). In addition, this xnew has never been seen during
training since v̄(znew) ̸∈ v̄(Ẑ train) = Z train. The experiment of Figure 7.4 illustrates this procedure.

About the extra assumption “CPEB(Z train) ⊆ Z test”. Recall that, in Assumption 7.1, we
interpreted f(Z test) to be the set of “reasonable” observations x, of which we only observe a subset
f(Z train). Under this interpretation, Z test is the set of reasonable values for the vector z and the
additional assumption that CPEB(Z train) ⊆ Z test in Corollary 7.1 requires that the Cartesian-product
extension of Z train consists only of reasonable values of z. From this assumption, we can easily
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ScalarLatents BlockLatents BlockLatents
(independent z) (dependent z)

Decoders RMSE LMSSpear RMSEOOS LMSOOS
Spear RMSE LMSTree RMSE LMSTree

Non-add. .06 ±.002 70.6±5.21 .18±.012 73.7±4.64 .02±.001 53.9±7.58 .02±.001 78.1±2.92

Additive .06±.002 91.5±3.57 .11±.018 89.5±5.02 .03±.012 92.2±4.91 .01±.002 99.9±0.02

Table 7.1. Reporting reconstruction mean squared error (RMSE ↓) and the Latent Matching Score
(LMS ↑) for the three datasets considered: ScalarLatents and BlockLatents with independent and
dependent latents. Runs were repeated with 10 random initializations. RMSEOOS and LMSOOS

Spear are
the same metric but evaluated out of support (see Appendix B.3 for details). While the standard
error is high, the differences are still clear as can be seen in their box plot version in Appendix B.4.

conclude that f̂(CPEB(Ẑ train)) ⊆ f(Z test), which can be interpreted as: “The novel observations
xnew obtained via Cartesian-product extrapolation are reasonable”. Appendix A.11 describes an
example where the assumption is violated, i.e. CPEB(Z train) ̸⊆ Z test. The practical implication of
this is that the new observations xnew obtained via Cartesian-product extrapolation might not always
be reasonable.

Disentanglement is not enough for extrapolation. To the best of our knowledge, Corollary 7.1
is the first result that formalizes how disentanglement can induce extrapolation. We believe it
illustrates the fact that disentanglement alone is not sufficient to enable extrapolation and that one
needs to restrict the hypothesis class of decoders in some way. Indeed, given a learned decoder f̂
that is disentangled w.r.t. f on the training support Z train, one cannot guarantee both decoders will
“agree” outside the training domain without further restricting f̂ and f . This work has focused on
“additivity”, but we believe other types of restriction could correspond to other types of extrapolation.

7.4. Experiments
We now present empirical validations of the theoretical results presented earlier. To achieve

this, we compare the ability of additive and non-additive decoders to both identify ground-truth
latent factors (Theorems 7.1 & 7.2) and extrapolate (Corollary 7.1) when trained to solve the
reconstruction task on simple images (64× 64× 3) consisting of two balls moving in space [Ahuja
et al., 2022b]. See Appendix B.1 for training details. We consider two datasets: one where the two
ball positions can only vary along the y-axis (ScalarLatents) and one where the positions can vary
along both the x and y axes (BlockLatents).

ScalarLatents: The ground-truth latent vector z ∈ R2 is such that z1 and z2 corresponds to
the height (y-coordinate) of the first and second ball, respectively. Thus the partition is simply
B = {{1}, {2}} (each object has only one latent factor). This simple setting is interesting to study
since the low dimensionality of the latent space (dz = 2) allows for exhaustive visualizations
like Figure 7.4. To study Cartesian-product extrapolation (Corollary 7.1), we sample z from a
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distribution with a L-shaped support given by Z train := [0, 1]× [0, 1] \ [0.5, 1]× [0.5, 1], so that the
training set does not contain images where both balls appear in the upper half of the image (see
Appendix B.2).

BlockLatents: The ground-truth latent vector z ∈ R4 is such that z{1,2} and z{3,4} cor-
respond to the x, y position of the first and second ball, respectively (the partition is simply
B = {{1, 2}, {3, 4}}, i.e. each object has two latent factors). Thus, this more challenging setting
illustrates “block-disentanglement”. The latent z is sampled uniformly from the hypercube [0, 1]4

but the images presenting occlusion (when a ball is behind another) are rejected from the dataset.
We discuss how additive decoders cannot model images presenting occlusion in Appendix A.12.
We also present an additional version of this dataset where we sample from the hypercube [0, 1]4

with dependencies. See Appendix B.2 for more details about data generation.
Evaluation metrics: To evaluate disentanglement, we compute a matrix of scores (sB,B′) ∈

Rℓ×ℓ where ℓ is the number of blocks in B and sB,B′ is a score measuring how well we can predict
the ground-truth block zB from the learned latent block ẑB′ = ĝB′(x) outputted by the encoder. The
final Latent Matching Score (LMS) is computed as LMS = arg maxπ∈SB

1
ℓ

∑
B∈B sB,π(B), where

SB is the set of permutations respecting B (Definition 7.2). When B := {{1}, . . . , {dz}} and the
score used is the absolute value of the correlation, LMS is simply the mean correlation coefficient

(MCC), which is widely used in the nonlinear ICA literature [Hyvarinen and Morioka, 2016, 2017,
Hyvärinen et al., 2019, Khemakhem et al., 2020a, Lachapelle et al., 2022]. Because our theory
guarantees recovery of the latents only up to invertible and potentially nonlinear transformations,
we use the Spearman correlation, which can capture nonlinear relationships unlike the Pearson
correlation. We denote this score by LMSSpear and will use it in the dataset ScalarLatents. For
the BlockLatents dataset, we cannot use Spearman correlation (because zB are two dimensional).
Instead, we take the score sB,B′ to be the R2 score of a regression tree. We denote this score by
LMStree. There are subtleties to take care of when one wants to evaluate LMStree on a non-additive
model due to the fact that the learned representation does not have a natural partition B. We
must thus search over partitions. We discuss this and provide further details on the metrics in
Appendix B.3.

7.4.1. Results

Additivity is important for disentanglement. Table 7.1 shows that the additive decoder
obtains a much higher LMSSpear & LMSTree than its non-additive counterpart on all three datasets
considered, even if both decoders have very small reconstruction errors. This is corroborated by the
visualizations of Figures 7.4 & 7.5. Appendix B.5 additionally shows object-specific reconstructions
for the BlockLatents dataset. We emphasize that disentanglement is possible even when the latent
factors are dependent (or causally related), as shown on the ScalarLatents dataset (L-shaped
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(a) Additive decoder (b) Non-additive decoder

Figure 7.4. Figure (a) shows latent representation outputted by the encoder ĝ(x) over the training
dataset, and the corresponding reconstructed images of the additive decoder with median LMSSpear

among runs performed on the ScalarLatents dataset. Figure (b) shows the same thing for the
non-additive decoder. The color gradient corresponds to the value of one of the ground-truth
factor, the red dots correspond to factors used to generate the images and the yellow dashed square
highlights extrapolated images.
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(a) Additive Decoder
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(b) Non-Additive Decoder

Figure 7.5. Latent responses for the case of independent latents in the BlockLatent dataset. In
each plot, we report the latent factors predicted from multiple images where one ball moves along
only one axis at a time. For the additive case, at most two latents change, as it should, while more
than two latents change for the non-additive case. See Appendix B.5 for details.

support implies dependencies) and on the BlockLatents dataset with dependencies (Table 7.1).
Note that prior works have relied on interventions [Ahuja et al., 2023, 2022b, Brehmer et al., 2022]
or Cartesian-product supports Wang and Jordan [2022], Roth et al. [2023] to deal with dependencies.

Additivity is important for Cartesian-product extrapolation. Figure 7.4 illustrates that the
additive decoder can generate images that are outside the training domain (both balls in upper half of
the image) while its non-additive counterpart cannot. Furthermore, Table 7.1 also corroborates this
showing that the “out-of-support" (OOS) reconstruction MSE and LMSSpear (evaluated only on the
samples never seen during training) are significantly better for the additive than for the non-additive
decoder.

Importance of connected support. Theorem 7.2 required that the support of the latent factors,
Z train, was path-connected. Appendix B.6 shows experiments where this assumption is violated,
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which yields lower LMSSpear for the additive decoder, thus highlighting the importance of this
assumption.

7.5. Conclusion
We provided an in-depth identifiability analysis of additive decoders, which bears resemblance

to standard decoders used in OCRL, and introduced a novel theoretical framework showing how
this architecture can generate reasonable images never seen during training via “Cartesian-product
extrapolation”. We validated empirically both of these results and confirmed that additivity was
indeed crucial. By studying rigorously how disentanglement can induce extrapolation, our work
highlighted the necessity of restricting the decoder to extrapolate and set the stage for future works
to explore disentanglement and extrapolation in other function classes such as masked decoders
typically used in OCRL. We postulate that the type of identifiability analysis introduced in this
work has the potential of expanding our understanding of creativity in generative models, ultimately
resulting in representations that generalize better.

296



Appendices of Chapter 7

A. Identifiability and Extrapolation Analysis

A.1. Useful definitions and lemmas

We start by recalling some notions of general topology that are going to be used later on. For a
proper introduction to these concepts, see for example Munkres [2000].

Definition 7.6 (Regularly closed sets). A set Z ⊆ Rdz is regularly closed if Z = Z◦, i.e. if it is

equal to the closure of its interior (in the standard topology of Rn).

Definition 7.7 (Connected sets). A set Z ⊆ Rdz is connected if it cannot be written as a union of

non-empty and disjoint open sets (in the subspace topology).

Definition 7.8 (Path-connected sets). A set Z ⊆ Rdz is path-connected if for all pair of points

z0, z1 ∈ Z , there exists a continuous map ϕ : [0, 1] → Z such that ϕ(0) = z0 and ϕ(1) = z1.

Such a map is called a path between z0 and z1.

Definition 7.9 (Homeomorphism). Let A and B be subsets of Rn equipped with the subspace

topology. A function f : A→ B is an homeomorphism if it is bijective, continuous and its inverse

is continuous.

The following technical lemma will be useful in the proof of Theorem 7.1. For it, we will need
additional notation: Let S ⊆ A ⊆ Rn. We already saw that S refers to the closure S in the Rn

topology. We will denote by clA(S) the closure of S in the subspace topology of A induced by Rn,
which is not necessarily the same as S. In fact, both can be related via clA = S ∩ A (see Munkres
[2000, Theorem 17.4, p.95]).

Lemma 7.1. Let A,B ⊆ Rn and suppose there exists an homeomorphism f : A → B. If A is

regularly closed in Rn, we have that B ⊆ B◦.

Proof Note that f
∣∣
A◦ is a continuous injective function from the open set A◦ to f(A◦). By the

“invariance of domain” theorem [Munkres, 2000, p.381], we have that f(A◦) must be open in Rn.
Of course, we have that f(A◦) ⊆ B, and thus f(A◦) ⊆ B◦ (the interior of B is the largest open set
contained in B). Analogously, f−1

∣∣
B◦ is a continuous injective function from the open set B◦ to



Calligraphic & indexing conventions

[n] := {1, 2, . . . , n}
x Scalar (random or not, depending on context)
x Vector (random or not, depending on context)
X Matrix
X Set/Support
f Scalar-valued function
f Vector-valued function

f
∣∣
A

Restriction of f to the set A
Df , Df Jacobian of f and f

D2f Hessian of f
B ⊆ [n] Subset of indices
|B| Cardinality of the set B
xB Vector formed with the ith coordinates of x, for all i ∈ B

XB,B′ Matrix formed with the entries (i, j) ∈ B ×B′ ofX .
Given X ⊆ Rn, XB := {xB | x ∈ X} (projection of X )

Recurrent notation

x ∈ Rdx Observation
z ∈ Rdz Vector of latent factors of variations
Z ⊆ Rdz Support of z

f Ground-truth decoder function
f̂ Learned decoder function
B A partition of [dz] (assumed contiguous w.l.o.g.)

B ∈ B A block of the partition B
B(i) ∈ B The unique block of B that contains i

π : [dz]→ [dz] A permutation
SB :=

⋃
B∈B B

2

Sc
B := [dz]2 \ SB

Rdz×dz
SB

:= {M ∈ Rdz×dz | (i, j) ̸∈ SB =⇒ Mi,j = 0}

General topology

X Closure of the subset X ⊆ Rn in the standard topology of
Rn

X ◦ Interior of the subset X ⊆ Rn in the standard topology of
Rn

Table 7.2. Table of notation.
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f−1(B◦). Again, by “invariance of domain”, f−1(B◦) must be open in Rn and thus f−1(B◦) ⊆ A◦.
We can conclude that f(A◦) = B◦.

We can conclude as follow:

B = f(A) = f(A◦) = f(A◦ ∩ A) = f(clA(A◦)) ⊆ clB(f(A◦)) = clB(B◦) = B◦ ∩B ⊆ B◦ ,

where the first inclusion holds by continuity of f [Munkres, 2000, Thm.18.1 p.104].

This lemma is taken from Lachapelle et al. [2022].

Lemma 7.2 (Sparsity pattern of an invertible matrix contains a permutation). Let L ∈ Rm×m be an

invertible matrix. Then, there exists a permutation σ such that Li,σ(i) ̸= 0 for all i.

Proof Since the matrix L is invertible, its determinant is non-zero, i.e.

det(L) :=
∑

π∈Sm

sign(π)
m∏

i=1

Li,π(i) ̸= 0 , (7.12)

where Sm is the set of m-permutations. This equation implies that at least one term of the sum is
non-zero, meaning there exists π ∈ Sm such that for all i ∈ [m], Li,π(i) ̸= 0.

Definition 7.10 (Aligned subspaces of Rm×n). Given a subset S ⊆ {1, ...,m} × {1, ..., n}, we

define

Rm×n
S := {M ∈ Rm×n | (i, j) ̸∈ S =⇒ Mi,j = 0} . (7.13)

Definition 7.11 (Useful sets). Given a partition B of [d], we define

SB :=
⋃

B∈B

B2 Sc
B := {1, . . . , dz}2 \ SB (7.14)

Definition 7.12 (Ck-diffeomorphism). Let A ⊆ Rn and B ⊆ Rm. A map f : A→ B is said to be

a Ck-diffeomorphism if it is bijective, C2 and has a C2 inverse.

Remark 7.2. Differentiability is typically defined for functions that have an open domain in Rn.

However, in the definition above, the set A might not be open in Rn and B might not be open in Rm.

In the case of an arbitrary domain A, it is customary to say that a function f : A ⊆ Rn → Rm is

Ck if there exists a Ck function g defined on an open set U ⊆ Rn that contains A such that g
∣∣
A

= f

(i.e. g extends f ). With this definition, we have that a composition of Ck functions is Ck, as usual.

See for example p.199 of Munkres [1991].

The following lemma allows us to unambiguously define the k first derivatives of a Ck function
f : A→ Rm on the set A◦.

Lemma 7.3. Let A ⊆ Rn and f : A → Rm be a Ck function. Then, its k first derivatives is

uniquely defined on A◦ in the sense that they do not depend on the specific choice of Ck extension.
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Proof Let g : U → Rn and h : V → Rn be two Ck extensions of f to U ⊆ Rn and V ⊆ Rn both
open in Rn. By definition,

g(x) = f(x) = h(x), ∀x ∈ A . (7.15)

The usual derivative is uniquely defined on the interior of the domain, so that

Dg(x) = Df(x) = Dh(x), ∀x ∈ A◦ . (7.16)

Consider a point x0 ∈ A◦. By definition of closure, there exists a sequence {xk}∞
k=1 ⊆ A◦ s.t.

limk→∞ xk = x0. We thus have that

lim
k→∞

Dg(xk) = lim
k→∞

Dh(xk) (7.17)

Dg(x0) = Dh(x0) , (7.18)

where we used the fact that the derivatives of g and h are continuous to go to the second line. Thus,
all the Ck extensions of f must have equal derivatives on A◦. This means we can unambiguously
define the derivative of f everywhere on A◦ to be equal to the derivative of one of its Ck extensions.

Since f is Ck, its derivative Df is Ck−1, we can thus apply the same argument to get that the
second derivative of f is uniquely defined on A◦◦

. It can be shown that A◦◦ = A◦. One can thus
apply the same argument recursively to show that the first k derivatives of f are uniquely defined
on A◦.

Definition 7.13 (Ck-diffeomorphism onto its image). Let A ⊆ Rn. A map f : A → Rm is said

to be a Ck-diffeomorphism onto its image if the restriction f to its image f̃ : A → f(A) is a

Ck-diffeomorphism.

Remark 7.3. If S ⊆ A ⊆ Rn and f : A → Rm is a Ck-diffeomorphism on its image, then the

restriction of f to S, i.e. f
∣∣
S
, is also a Ck diffeomorphism on its image. That is because f

∣∣
S

is

clearly bijective, is Ck (simply take the Ck extension of f ) and so is its inverse (simply take the Ck

extension of f−1).

A.2. Relationship between additive decoders and the diagonal Hessian penalty

Proposition 7.1 (Equivalence between additivity and diagonal Hessian). Let f : Rdz → Rdx be a

C2 function. Then,

∀z ∈ Rdz , f(z) =
∑

B∈B f
(B)(zB)

where f (B) : R|B| → Rdx is C2.
⇐⇒

∀k ∈ [dx], z ∈ Rdz , D2fk(z) is

block diagonal with blocks in B.
(7.19)
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Proof We start by showing the “ =⇒ ” direction. Let B and B′ be two distinct blocks of B. Let
i ∈ B and i′ ∈ B′. We can compute the derivative of fk w.r.t. zi:

Difk(z) =
∑
B̄∈B

Dif
(B̄)
k (zB̄) = Dif

(B)
k (zB) , (7.20)

where the last equality holds because i ∈ B and not in any other block B̄. Furthermore,

D2
i,i′fk(z) = D2

i,i′f
(B)
k (zB) = 0 , (7.21)

where the last equality holds because i′ ̸∈ B. This shows that D2fk(z) is block diagonal.
We now show the “⇐= ” direction. Fix k ∈ [dx], B ∈ B. We know that D2

B,Bcfk(z) = 0 for
all z ∈ Rdz . Fix z ∈ Rdz . Consider a continuously differentiable path ϕ : [0, 1] → R|Bc| such
that ϕ(0) = 0 and ϕ(1) = zBc . As D2

B,Bcfk(z) is a continuous function of z, we can use the
fundamental theorem of calculus for line integrals to get that

DBfk(zB, zBc)−DBfk(zB, 0) =
∫ 1

0
D2

B,Bcfk(zB,ϕ(t))︸ ︷︷ ︸
=0

ϕ′(t)dt = 0 , (7.22)

(where D2
B,Bcfk(zB,ϕ(t))ϕ′(t) denotes a matrix-vector product) which implies that

DBfk(z) = DBfk(zB, 0) . (7.23)

And the above equality holds for all B ∈ B and all z ∈ Rdz .
Choose an arbitrary z ∈ Rdz . Consider a continously differentiable path ψ : [0, 1]→ Rdz such

that ψ(0) = 0 and ψ(1) = z. By applying the fundamental theorem of calculus for line integrals
once more, we have that

fk(z)− fk(0) =
∫ 1

0
Dfk(ψ(t))ψ′(t)dt (7.24)

=
∫ 1

0

∑
B∈B

DBfk(ψ(t))ψ′
B(t)dt (7.25)

=
∑
B∈B

∫ 1

0
DBfk(ψ(t))ψ′

B(t)dt (7.26)

=
∑
B∈B

∫ 1

0
DBfk(ψB(t), 0)ψ′

B(t)dt , (7.27)
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where the last equality holds by (7.23). We can further apply the fundamental theorem of calculus
for line integrals to each term

∫ 1
0 DBfk(ψB(t), 0)ψ′

B(t)dt to get

fk(z)− fk(0) =
∑
B∈B

(fk(zB, 0)− fk(0, 0)) (7.28)

=⇒ fk(z) = fk(0) +
∑
B∈B

(fk(zB, 0)− fk(0)) (7.29)

=
∑
B∈B

(
fk(zB, 0)− |B| − 1

|B|
fk(0)

)
︸ ︷︷ ︸

f
(B)
k (zB):=

. (7.30)

and since z was arbitrary, the above holds for all z ∈ Rdz . Note that the functions f (B)
k (zB) must

be C2 because fk is C2. This concludes the proof.

A.3. Additive decoders form a superset of compositional decoders [Brady
et al., 2023]

Compositional decoders were introduced by Brady et al. [2023] as a suitable class of functions
to perform object-centric representation learning with identifiability guarantees. They are also
interested in block-disentanglement, but, contrarily to our work, they assume that the latent vector z
is fully supported, i.e. Z = Rdz . We now rewrite the definition of compositional decoders in the
notation used in this work:

Definition 7.14 (Compositional decoders, adapted from Brady et al. [2023]). Given a partition B, a

differentiable decoder f : Rdz → Rdx is said to be compositional w.r.t. B whenever the Jacobian

Df(z) is such that for all i ∈ [dz], B ∈ B, z ∈ Rdz , we have

DBfi(z) ̸= 0 =⇒ DBcfi(z) = 0 ,

where Bc is the complement of B ∈ B.

In other words, each line of the Jacobian can have nonzero values only in one block B ∈ B.
Note that this nonzero block can change with different values of z.

The next result shows that additive decoders form a superset of C2 compositional decoders
(Brady et al. [2023] assumed only C1). Note that additive decoders are strictly more expressive than
C2 compositional decoders because some additive functions are not compositional, like Example 7.3
for instance.

Proposition 7.2 (Compositional implies additive). Given a partition B, if f : Rdz → Rdx is

compositional (Definition 7.14) and C2, then it is also additive (Definition 7.1).
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Proof Choose any i ∈ [dx]. Our strategy will be to show that D2fi is block diagonal everywhere on
Rdz and use Proposition 7.1 to conclude that fi is additive.

Choose an arbitrary z0 ∈ Rdz . By compositionality, there exists a block B ∈ B such that
DBcfi(z0) = 0. We consider two cases separately:

Case 1 Assume DBfi(z0) ̸= 0. By continuity of DBfi, there exists an open neighborhood
of z0, U , s.t. for all z ∈ U, DBfi(z) ̸= 0. By compositionality, this means that, for all z ∈ U ,
DBcfi(z) = 0. When a function is zero on an open set, its derivative must also be zero, hence
DDBcfi(z0) = 0. Because f isC2, the Hessian is symmetric so that we also haveDBcDfi(z0) = 0.
We can thus conclude that the Hessian D2fi(z0) is such that all entries are zero except possibly for
D2fi(z0)B,B. Hence, D2fi(z0) is block diagonal with blocks in B.

Case 2: Assume DBfi(z0) = 0. This means the whole row of the Jacobian is zero, i.e.
Dfi(z0) = 0. By continuity of Dfi, we have that the set V := (Dfi)−1({0}) is closed. Thus this
set decomposes as V = V ◦ ∪ ∂V where V ◦ and ∂V are the interior and boundary of V , respectively.

Case 2.1: Suppose z0 ∈ V ◦. Then we can take a derivative so that D2fi(z0) = 0, which of
course means that D2fi(z0) is diagonal.

Case 2.2: Suppose z0 ∈ ∂V . By the definition of boundary, for all open set U containing z0,
U intersects with the complement of V , i.e. (Dfi)−1(Rdz \ {0}). This means we can construct a
sequence {zk}∞

k=1 ⊆ V c which converges to z0. By Case 1, we have that for all k ≥ 1, D2fi(zk) is
block diagonal. This means that limk→∞ D2fi(zk) is block diagonal. Moreover, by continuity of
D2fi, we have that limk→∞ D2fi(zk) = D2fi(z0). Hence D2fi(z0) is block diagonal.

We showed that for all z0 ∈ Rdz , D2fi(z0) is block diagonal. Hence, f is additive by
Proposition 7.1.

A.4. Examples of local but non-global disentanglement

In this section, we provide examples of mapping v : Ẑ train → Z train that satisfy the local disen-
tanglement property of Definition 7.4, but not the global disentanglement property of Definition 7.3.
Note that these notions are defined for pairs of decoders f and f̂ , but here we construct directly the
function v which is usually defined as f−1 ◦ f̂ . However, given v we can always define f and f̂
to be such that f−1 ◦ f̂ = v: Simply take f(z) := [z1, . . . ,zdz , 0, . . . , 0]⊤ ∈ Rdx and f̂ := f ◦ v.
This construction however yields a decoder f that is not sufficiently nonlinear (Assumption 7.2).
Clearly the mappings v that we provide in the following examples cannot be written as compositions
of decoders f−1 ◦ f̂ where f and f̂ satisfy all assumptions of Theorem 7.2, as this would contradict
the theorem. In Examples 7.5 & 7.6, the path-connected assumption of Theorem 7.2 is violated. In
Example 7.7, it is less obvious to see which assumptions would be violated.
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Example 7.5 (Disconnected support with changing permutation). Let v : Ẑ → R2 s.t. Ẑ =
Ẑ(1) ∪ Ẑ(2) ⊆ R2 where Ẑ(1) = {z ∈ R2 | z1 ≤ 0 and z2 ≤ 0} and Ẑ(2) = {z ∈ R2 | z1 ≥
1 and z2 ≥ 1}. Assume

v(z) :=

(z1, z2), if z ∈ Ẑ(1)

(z2, z1), if z ∈ Ẑ(2)
. (7.31)

Step 1: v is a diffeomorphism. Note that v is its own inverse. Indeed,

v(v(z)) =

v(z1, z2) = (z1, z2), if z ∈ Ẑ(1)

v(z2, z1) = (z1, z2), if z ∈ Ẑ(2)
.

Thus, v is bijective on its image. Clearly, v is C2, thus v−1 = v is also C2. Hence, v is a

C2-diffeomorphism.

Step 2: v is locally disentangled. The Jacobian of v is given by

Dv(z) :=



1 0

0 1

 , if z ∈ Ẑ(1)

0 1

1 0

 , if z ∈ Ẑ(2)

, (7.32)

which is everywhere a permutation matrix, hence v is locally disentangled.

Step 3: v is not globally disentangled. That is because v1(z1, z2) depends on both z1 and z2.

Indeed, if z2 = 0, we have that v1(−1, 0) = −1 ̸= 0 = v1(0, 0). Also, if z1 = 1, we have that

v1(1, 1) = 1 ̸= 2 = v1(1, 2).
Example 7.6 (Disconnected support with fixed permutation). Let v : Ẑ → R2 s.t. Ẑ = Ẑ(1) ∪
Ẑ(2) ⊆ R2 where Ẑ(1) = {z ∈ R2 | z2 ≤ 0} and Ẑ(2) = {z ∈ R2 | z2 ≥ 1}. Assume

v(z) := z + 1(z ∈ Ẑ(2)).
Step 1: v is a diffeomorphism. The image of v is the union of the following two sets: Z(1) :=

v(Ẑ(1)) = Ẑ(1) andZ(2) := v(Ẑ(2)) = {z ∈ R2 | z2 ≥ 2}. Consider the mapw : Z(1)∪Z(2) → Ẑ
defined as w(z) := z − 1(z ∈ Z(2)). We now show that w is the inverse of v:

w(v(z)) = v(z)− 1(v(z) ∈ Z(2)) (7.33)

= z + 1(z ∈ Ẑ(2))− 1(z + 1(z ∈ Ẑ(2)) ∈ Z(2)) . (7.34)

If z ∈ Ẑ(2), we have

w(v(z)) = z + 1− 1(z + 1 ∈ Z(2)) (7.35)

= z + 1− 1(z ∈ Ẑ(2)) = z . (7.36)
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Figure 7.6. Illustration of Ẑ = Ẑ(b) ∪ Ẑ(o) in Example 7.7 where Ẑ(b) is the blue region and Ẑ(o)

is the orange region. The two black dots correspond to (−1/2,−1/2) and (1/2,−1/2), where the
function v2(z1, z2) is evaluated to show that it is not constant in z1.

If z ∈ Ẑ(1), we have

w(v(z)) = z − 1(z ∈ Z(2)) = z . (7.37)

A similar argument can be made to show that v(w(z)) = z. Thusw is the inverse of v. Both v and

its inverse w are C2, thus v is a C2-diffeomorphism on its image.

Step 2: v is locally disentangled. This is clear since Dv(z) = I everywhere.

Step 3: v is not globally disentangled. Indeed, the function v1(z1, z2) = z1 + 1(z ∈ Ẑ(2)) is

not constant in z2.

Example 7.7 (Connected support). Let v : Ẑ → R2 s.t. Ẑ = Ẑ(b) ∪ Ẑ(o) where Ẑ(b) and Ẑ(o) are

respectively the blue and orange regions of Figure 7.6. Both regions contain their boundaries. The

function v is defined as follows:

v1(z) := z1 (7.38)

v2(z) :=


(z2+1)2+1

2 , if z ∈ Ẑ(b)

ez2 , if z ∈ Ẑ(o)
. (7.39)

Step 1: v is a diffeomorphism. Clearly, v1 is C2. To show that v2 also is, we must verify that

v2(z) is C2 at the frontier between Ẑ(b) and Ẑ(o), i.e. when z ∈ [1/4, 1]× {0}.
v2(z) is continuous since

(z2 + 1)2 + 1
2

∣∣∣∣
z2=0

= 1 = ez2|z2=0 . (7.40)

v2(z) is C1 since(
(z2 + 1)2 + 1

2

)′∣∣∣∣
z2=0

= (z2 + 1)|z2=0 = 1 = ez2|z2=0 = (ez2)′|z2=0 . (7.41)
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v2(z) is C2 since(
(z2 + 1)2 + 1

2

)′′∣∣∣∣
z2=0

= 1|z2=0 = 1 = ez2|z2=0 = (ez2)′′|z2=0 . (7.42)

We will now find an explicit expression for the inverse of v. Define

w1(z) := z1 (7.43)

w2(z) :=


√

2z2 − 1− 1, if z ∈ v(Ẑ(b))

log(z2), if z ∈ v(Ẑ(o))
. (7.44)

It is straightforward to see that w(v(z)) = z for all z ∈ Ẑ . One can also show that w is C2 at the

boundary between both regions v(Ẑ(b)) and v(Ẑ(o)), i.e. when z ∈ [1/4, 1]× {1}.
Since both v and its inverse w are C2, v is a C2-diffeomorphism.

Step 2: v is locally disentangled. The Jacobian of v is

Dv(z) :=



1 0

0 z2 + 1

 , if z ∈ Ẑ(b)

1 0

0 ez2

 , if z ∈ Ẑ(o)

, (7.45)

which is a permutation-scaling matrix everywhere on Ẑ . Thus local disentanglement holds.

Step 3: v is not globally disentangled. However, v2(z1, z2) is not constant in z1. Indeed,

v2(−
1
2 ,−

1
2) = (z2 + 1)2 + 1

2

∣∣∣∣
z2=−1/2

= 5
8 ̸= e−1/2 = v2(

1
2 ,−

1
2) . (7.46)

Thus global disentanglement does not hold.

A.5. Proof of Theorem 7.1

Proposition 7.3. Suppose that the data-generating process satisfies Assumption 7.1, that the learned

decoder f̂ : Rdz → Rdx is a C2-diffeomorphism onto its image and that the encoder ĝ : Rdx → Rdz

is continuous. Then, if f̂ and ĝ solve the reconstruction problem on the training distribution, i.e.

Etrain||x − f̂(ĝ(x))||2 = 0, we have that f(Z train) = f̂(Ẑ train) and the map v := f−1 ◦ f̂ is a

C2-diffeomorphism from Ẑ train to Z train.

Proof First note that

Etrain||x− f̂(ĝ(x))||2 = Etrain||f(z)− f̂(ĝ(f(z)))||2 = 0 , (7.47)

which implies that, for Ptrain
z -almost every z ∈ Z train,

f(z) = f̂(ĝ(f(z))) .
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But since the functions on both sides of the equations are continuous, the equality holds for all
z ∈ Z train. This implies that f(Z train) = f̂ ◦ ĝ ◦ f(Z train) = f̂(Ẑ train).

By Remark 7.3, the restrictions f : Z train → f(Z train) and f̂ : Ẑ train → f̂(Ẑ train)
are C2-diffeomorphisms and, because f(Z train) = f̂(Ẑ train), their composition
v := f−1 ◦ f̂ : Ẑ train → Z train is a well defined C2-diffeomorphism (since C2-diffeomorphisms are
closed under composition).

Theorem 7.1 (Local disentanglement via additive decoders). Suppose that the data-generating

process satisfies Assumption 7.1, that the learned decoder f̂ : Rdz → Rdx is a C2-diffeomorphism,

that the encoder ĝ : Rdx → Rdz is continuous, that both f and f̂ are additive (Definition 7.1)

and that f is sufficiently nonlinear as formalized by Assumption 7.2. Then, if f̂ and ĝ solve the

reconstruction problem on the training distribution, i.e. Etrain||x− f̂(ĝ(x))||2 = 0, we have that f̂

is locally B-disentangled w.r.t. f (Definition 7.4).

Proof We can apply Proposition 7.3 and have that the map v := f−1 ◦ f̂ is a C2-diffeomorphism
from Ẑ train to Z train. This allows one to write

f ◦ v(z) = f̂(z) ∀z ∈ Ẑ train (7.48)∑
B∈B

f (B)(vB(z)) =
∑
B∈B

f̂ (B)(zB) ∀z ∈ Ẑ train . (7.49)

Since Z train is regularly closed and is diffeomorphic to Ẑ train, by Lemma 7.1, we must have that
Ẑ train ⊆ (Ẑ train)◦. Moreover, the left and right hand side of (7.49) are C2, which means they have
uniquely defined first and second derivatives on (Ẑ train)◦ by Lemma 7.3. This means the derivatives
are uniquely defined on Ẑ train.

Let z ∈ Ẑ train. Choose some J ∈ B and some j ∈ J . Differentiate both sides of the above
equation with respect to zj , which yields:∑

B∈B

∑
i∈B

Dif
(B)(vB(z))Djvi(z) = Djf̂

(J)(zJ) . (7.50)

Choose J ′ ∈ B \ {J} and j′ ∈ J ′. Differentiating the above w.r.t. zj′ yields∑
B∈B

∑
i∈B

[
Dif

(B)(vB(z))D2
j,j′vi(z) +

∑
i′∈B

D2
i,i′f (B)(vB(z))Dj′vi′(z)Djvi(z)

]
= 0

∑
B∈B

[∑
i∈B

[
Dif

(B)(vB(z))D2
j,j′vi(z) +D2

i,if
(B)(vB(z))Dj′vi(z)Djvi(z)

]
+

∑
(i,i′)∈B2

<

D2
i,i′f (B)(vB(z))(Dj′vi′(z)Djvi(z) +Dj′vi(z)Djvi′(z))

]
= 0 , (7.51)
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where B2
< := B2 ∩ {(i, i′) | i′ < i}. For the sake of notational conciseness, we are going to refer to

SB and Sc
B as S and Sc (Definition 7.11). Also, define

S< :=
⋃

B∈B

B2
< . (7.52)

Let us define the vectors

∀i ∈ {1, ...dz}, a⃗i(z) := (D2
j,j′vi(z))(j,j′)∈Sc (7.53)

∀i ∈ {1, ...dz}, b⃗i(z) := (Dj′vi(z)Djvi(z))(j,j′)∈Sc (7.54)

∀B ∈ B, ∀(i, i′) ∈ B2
<, c⃗i,i′(z) := (Dj′vi′(z)Djvi(z) +Dj′vi(z)Djvi′(z))(j,j′)∈Sc (7.55)

This allows us to rewrite, for all k ∈ {1, ..., dx}

∑
B∈B

∑
i∈B

[
Dif

(B)
k (vB(z))⃗ai(z) +D2

i,if
(B)
k (vB(z))⃗bi(z)

]
+

∑
(i,i′)∈B2

<

D2
i,i′f

(B)
k (vB(z))c⃗i,i′(z)

 = 0 .

(7.56)

We define

w(z, k) := ((Dif
(B)
k (zB))i∈B, (D2

i,if
(B)
k (zB))i∈B, (D2

i,i′f
(B)
k (zB))(i,i′)∈B2

<
)B∈B (7.57)

M (z) := [[⃗ai(z)]i∈B, [⃗bi(z)]i∈B, [⃗ci,i′(z)](i,i′)∈B2
<

]B∈B , (7.58)

which allows us to write, for all k ∈ {1, ..., dz}

M(z)w(v(z), k) = 0 . (7.59)

We can now recognize that the matrixW (v(z)) of Assumption 7.2 is given by

W (v(z))⊤ = [w(v(z), 1) . . . w(v(z), dx)] (7.60)

which allows us to write

M (z)W (v(z))⊤ = 0 (7.61)

W (v(z))M (z)⊤ = 0 (7.62)

Since W (v(z)) has full column-rank (by Assumption 7.2 and the fact that v(z) ∈ Z train), there
exists q rows that are linearly independent. Let K be the index set of these rows. This means
W (v(z))K,· is an invertible matrix. We can thus write

W (v(z))K,·M(z)⊤ = 0 (7.63)

(W (v(z))K,·)−1W (v(z))K,·M(z)⊤ = (W (v(z))K,·)−10 (7.64)

M (z)⊤ = 0 , (7.65)
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which means, in particular, that, ∀i ∈ {1, . . . , dz}, b⃗i(z) = 0, i.e.,

∀i ∈ {1, . . . , dz},∀(j, j′) ∈ Sc, Djvi(z)Dj′vi(z) = 0 (7.66)

Since the v is a diffeomorphism, its Jacobian matrix Dv(z) is invertible everywhere. By
Lemma 7.2, this means there exists a permutation π such that, for all j, Djvπ(j)(z) ̸= 0. This and
(7.66) imply that

∀(j, j′) ∈ Sc, Djvπ(j′)(z)Dj′vπ(j′)(z)︸ ︷︷ ︸
̸=0

= 0, (7.67)

=⇒ ∀(j, j′) ∈ Sc, Djvπ(j′)(z) = 0 . (7.68)

To show that Dv(z) is a B-block permutation matrix, the only thing left to show is that π respects
B. For this, we use the fact that, ∀B ∈ B,∀(i, i′) ∈ B2

<, c⃗i,i′(z) = 0 (recall M(z) = 0). Because
c⃗i,i′(z) = c⃗i′,i(z), we can write

∀(i, i′) ∈ S s.t. i ̸= i′,∀(j, j′) ∈ Sc, Dj′vi′(z)Djvi(z) +Dj′vi(z)Djvi′(z) = 0 . (7.69)

We now show that if (j, j′) ∈ Sc (indices belong to different blocks), then (π(j), π(j′)) ∈ Sc

(they also belong to different blocks). Assume this is false, i.e. there exists (j0, j
′
0) ∈ Sc such that

(π(j0), π(j′
0)) ∈ S. Then we can apply (7.69) (with i := π(j0) and i′ := π(j′

0)) and get

Dj′
0
vπ(j′

0)(z)Dj0vπ(j0)(z)︸ ︷︷ ︸
̸=0

+Dj′
0
vπ(j0)(z)Dj0vπ(j′

0)(z) = 0 , (7.70)

where the left term in the sum is different of 0 because of the definition of π. This implies that

Dj′
0
vπ(j0)(z)Dj0vπ(j′

0)(z) ̸= 0 , (7.71)

otherwise (7.70) cannot hold. But (7.71) contradicts (7.68). Thus, we have that,

(j, j′) ∈ Sc =⇒ (π(j), π(j′)) ∈ Sc . (7.72)

The contraposed is

(π(j), π(j′)) ∈ S =⇒ (j, j′) ∈ S (7.73)

(j, j′) ∈ S =⇒ (π−1(j), π−1(j′)) ∈ S . (7.74)

From the above, it is clear that π−1 respects B which implies that π respects B (Lemma 7.4). Thus
Dv(z) is a B-block permutation matrix.

Lemma 7.4 (B-respecting permutations form a group). Let B be a partition of {1, . . . , dz} and let

π and π̄ be a permutation of {1, . . . , dz} that respect B. The following holds:
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(1) The identity permutation e respects B.

(2) The composition π ◦ π̄ respects B.

(3) The inverse permutation π−1 respects B.

Proof The first statement is trivial, since for all B ∈ B, e(B) = B ∈ B.
The second statement follows since for all B ∈ B, π̄(B) ∈ B and thus π(π̄(B)) ∈ B.
We now prove the third statement. Let B ∈ B. Since π is surjective and respects B, there exists

a B′ ∈ B such that π(B′) = B. Thus, π−1(B) = π−1(π(B′)) = B′ ∈ B.

A.6. Sufficient nonlinearity v.s. sufficient variability in nonlinear ICA with
auxiliary variables

In Section 7.3.1, we introduced the “sufficient nonlinearity” condition (Assumption 7.2) and
highlighted its resemblance to the “sufficient variability” assumptions often found in the nonlinear
ICA literature [Hyvarinen and Morioka, 2016, 2017, Hyvärinen et al., 2019, Khemakhem et al.,
2020a,b, Lachapelle et al., 2022, Zheng et al., 2022]. We now clarify this connection. To make the
discussion more concrete, we consider the sufficient variability assumption found in Hyvärinen et al.
[2019]. In this work, the latent variable z is assumed to be distributed according to

p(z | u) :=
dz∏

i=1

pi(zi | u) . (7.75)

In other words, the latent factors zi are mutually conditionally independent given an observed
auxiliary variable u. Define

w(z,u) :=
((

∂

∂zi

log pi(zi | u)
)

i∈[dz ]

(
∂2

∂z2
i

log pi(zi | u)
)

i∈[dz ]

)
∈ R2dz . (7.76)

We now recall the assumption of sufficient variability of Hyvärinen et al. [2019]:

Assumption 7.3 (Assumption of variability from Hyvärinen et al. [2019, Theorem 1]). For any

z ∈ Rdz , there exists 2dz + 1 values of u, denoted by u(0),u(1), . . . ,u(2dz) such that the 2dz vectors

w(z,u(1))−w(z,u(0)), . . . ,w(z,u(2dz))−w(z,u(0)) (7.77)

are linearly independent.

To emphasize the resemblance with our assumption of sufficient nonlinearity, we rewrite it
in the special case where the partition B := {{1}, . . . , {dz}}. Note that, in that case, q :=
dz +

∑
B∈B

|B|(|B|+1)
2 = 2dz.
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Assumption 7.4 (Sufficient nonlinearity (trivial partition)). For all z ∈ Z train, f is such that the

following matrix has independent columns (i.e. full column-rank):

W (z) :=
[[
Dif

(i)(zi)
]

i∈[dz ]

[
D2

i,if
(i)(zi)

]
i∈[dz ]

]
∈ Rdx×2dz . (7.78)

One can already see the resemblance between Assumptions 7.3 & 7.4, e.g. both have something
to do with first and second derivatives. To make the connection even more explicit, definew(z, k) to
be the kth row ofW (z) (do not conflate withw(z,u)). Also, recall the basic fact from linear algebra
that the column-rank is always equal to the row-rank. This means thatW (z) is full column-rank if
and only if there exists k1, ..., k2dz ∈ [dx] such that the vectorsw(z, k1), . . . ,w(z, k2dz) are linearly
independent. It is then easy to see the correspondance between w(z, k) and w(z,u)−w(z,u(0))
(from Assumption 7.3) and between the pixel index k ∈ [dx] and the auxiliary variable u.

We now look at why Assumption 7.2 is likely to be satisfied when dx >> dz. Informally, one
can see that when dx is much larger than 2dz, the matrixW (z) has much more rows than columns
and thus it becomes more likely that we will find 2dz rows that are linearly independent, thus
satisfying Assumption 7.2.

A.7. Examples of sufficiently nonlinear additive decoders

Example 7.8 (A sufficiently nonlinear f - Example 7.3 continued). Consider the additive function

f(z) :=


z1

z2
1

z3
1

z4
1

+


(z2 + 1)
(z2 + 1)2

(z2 + 1)3

(z2 + 1)4

 . (7.79)

We will provide a numerical verification that this function is a diffeomorphism from the square

[−1, 0]× [0, 1] to its image that satisfies Assumption 7.2.

The Jacobian of f is given by

Df(z) =


1 1

2z1 2(z2 + 1)
3z2

1 3(z2 + 1)2

4z3
1 4(z2 + 1)3

 , (7.80)

and the matrixW (z) from Assumption 7.2 is given by

W (z) =


1 0 1 0

2z1 2 2(z2 + 1) 2
3z2

1 6z1 3(z2 + 1)2 6(z2 + 1)
4z3

1 12z2
1 4(z2 + 1)3 12(z2 + 1)2

 . (7.81)
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Figure 7.7. Numerical verification that f : [−1, 0]×[0, 1]→ R4 from Example 7.8 is injective (left),
has a full rank Jacobian (middle) and satisfies Assumption 7.2 (right). The left figure shows that f
is injective on the square [−1, 0]× [0, 1] since one can recover z uniquely by knowing the values of
f1(z) and f2(z), i.e. knowing the level sets. The middle figure reports the det(Df(z)⊤Df(z))
(columns of the Jacobian are normalized to have norm 1) and shows that it is nonzero in the square
[−1, 0] × [0, 1], which means the Jacobian is full rank. The right figure shows the determinant
of the matrix W (z) (from Assumption 7.2, but with normalized columns), we can see that it is
nonzero everywhere on the square [−1, 0]× [0, 1]. We normalized the columns of Df andW so
that the determinant is between 0 and 1.

Figure 7.7 presents a numerical verification that f is injective, has a full rank Jacobian and

satisfies Assumption 7.2. Injective f with full rank Jacobian is enough to conclude that f is a

diffeomorphism onto its image.

Example 7.9 (Smooth balls dataset is sufficiently nonlinear - Example 7.4 continued). We im-

plemented a ground-truth additive decoder f : [0, 5]2 → R64∗64∗3 which maps to 64x64 RGB

images consisting of two colored balls where z1 and z2 control their respective heights (Fig-

ure 7.8a). The analytical form of f can be found in our code base. The decoder f is implemented

in JAX [Bradbury et al., 2018] which allows for its automatic differentiation to compute Df and

D2f (Figures 7.8b & 7.8c). This allows us to verify numerically that f is sufficiently nonlinear

(Assumption 7.2). Recall that this assumption requires that W (z) (defined in Assumption 7.2)

has independent columns everywhere. To test this, we compute Vol(z) :=
√
| det(W (z)⊤W (z))|

over a grid of values of z and verify that Vol(z) > 0 everywhere (Figure 7.8d). Note that Vol(z)
corresponds to the 4D volume of the parallelepiped embedded in R64∗64∗3 spanned by the four

columns of W (z). This volume is > 0 if and only if the columns are linearly independent. Note

that we normalize the columns of W (z) so that they have a norm of one. It follows that Vol(z)
is between 0 and 1 where 1 means the vectors are orthogonal, i.e. maximally independent. The

minimal value of Vol(z) over the domain of f is ≈ 0.97, indicating that Assumption 7.2 holds.

A.8. Proof of Theorem 7.2

We start with a simple definition:
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(a) (b) (c)

(d) (e)

Figure 7.8. Figure (a) shows an image the synthetic dataset of Example 7.9. Figure (b) shows
the derivative of the image w.r.t. z1 (the height of the left ball) where the color intensity of each
pixel corresponds to the Euclidean norm along the RGB axis. Figure (c) similarly shows the second
derivative of the image w.r.t. z1. Figure (d) is a contour plot of the function

√
| det(W (z)⊤W (z))|

whereW (z) is defined in Assumption 7.2 (here columns are normalized to have unit norm). The
smallest value of

√
| det(W (z)⊤W (z))| across domain is ≈ 0.97, indicating that Assumption 2 is

satisfied. See Example 7.9 and code for details. Figure 7.8e is a higher resolution rendering of the
red region of Figure 7.8d (to make sure there is no singularity there).

Definition 7.15 (B-block permutation matrices). A matrix A ∈ Rd×d is a B-block permutation

matrix if it is invertible and can be written asA = CPπ where Pπ is the matrix representing the

B-respecting permutation π (Pπei = eπ(i)) and C ∈ Rd×d
SB

(See Definitions 7.10 & 7.11).

The following technical lemma leverages continuity and path-connectedness to show that the
block-permutation structure must remain the same across the whole domain. It can be skipped at
first read.

Lemma 7.5. Let C be a connected topological space and let M : C → Rd×d be a continuous

function. Suppose that, for all c ∈ C, M (c) is an invertible B-block permutation matrix (Defini-

tion 7.15). Then, there exists a B-respecting permutation π such that for all c ∈ C and all distinct

B,B′ ∈ B,M (c)π(B′),B = 0.

Proof The reason this result is not trivial, is that, even if M(c) is a B-block permutation for all
c, the permutation might change for different c. The goal of this lemma is to show that, if C is
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connected and the mapM (·) is continuous, then one can find a single permutation that works for
all c ∈ C.

First, since C is connected and M is continuous, its image, M(C), must be connected (by
[Munkres, 2000, Theorem 23.5]).

Second, from the hypothesis of the lemma, we know that

M(C) ⊆ A :=

 ⋃
π∈S(B)

Rd×d
SB
Pπ

 \ {singular matrices} , (7.82)

where S(B) is the set of B-respecting permutations and Rd×d
SB
Pπ = {MPπ |M ∈ Rd×d

SB
}. We can

rewrite the set A above as

A =
⋃

π∈S(B)

(
Rd×d

SB
Pπ \ {singular matrices}

)
, (7.83)

We now define an equivalence relation ∼ over B-respecting permutation: π ∼ π′ iff for all
B ∈ B, π(B) = π′(B). In other words, two B-respecting permutations are equivalent if they send
every block to the same block (note that they can permute elements of a given block differently).
We notice that

π ∼ π′ =⇒ Rd×d
SB
Pπ = Rd×d

SB
Pπ′ . (7.84)

Let S(B)/ ∼ be the set of equivalence classes induce by∼ and let Π stand for one such equivalence
class. Thanks to (7.84), we can define, for all Π ∈ S(B)/ ∼, the following set:

VΠ := Rd×d
SB
Pπ \ {singular matrices}, for some π ∈ Π , (7.85)

where the specific choice of π ∈ Π is arbitrary (any π′ ∈ Π would yield the same definition,
by (7.84)). This construction allows us to write

A =
⋃

Π∈S(B)/∼

VΠ , (7.86)

We now show that {VΠ}Π∈S(B)/∼ forms a partition of A. Choose two distinct equivalence classes of
permutations Π and Π′ and let π ∈ Π and π′ ∈ Π′ be representatives. We note that

Rd×d
SB
Pπ ∩ Rd×d

SB
Pπ′ ⊆ {singular matrices} , (7.87)

since any matrix that is both in Rd×d
SB
Pπ and Rd×d

SB
Pπ′ must have at least one row filled with zeros.

This implies that

VΠ ∩ VΠ′ = ∅ , (7.88)

which shows that {VΠ}Π∈S(B)/∼ is indeed a partition of A.
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Each VΠ is closed in A (wrt the relative topology) since

VΠ = Rd×d
SB
Pπ \ {singular matrices} = A ∩ Rd×d

SB
Pπ︸ ︷︷ ︸

closed in Rd×d

. (7.89)

Moreover, VΠ is open in A, since

VΠ = A \
⋃

Π′ ̸=Π

VΠ′

︸ ︷︷ ︸
closed in A

. (7.90)

Thus, for any Π ∈ S(B)/ ∼, the sets VΠ and
⋃

Π′ ̸=Π VΠ′ forms a separation (see [Munkres, 2000,
Section 23]). SinceM(C) is a connected subset of A, it must lie completely in VΠ or

⋃
Π′ ̸=Π VΠ′ ,

by [Munkres, 2000, Lemma 23.2]. Since this is true for all Π, it must follow that there exists a Π∗

such thatM(C) ⊆ VΠ∗ , which completes the proof.

Theorem 7.2 (From local to global disentanglement). Suppose that all the assumptions of The-

orem 7.1 hold. Additionally, assume Z train is path-connected (Definition 7.8) and that the block-

specific decoders f (B) and f̂ (B) are injective for all blocks B ∈ B. Then, if f̂ and ĝ solve the

reconstruction problem on the training distribution, i.e. Etrain||x− f̂(ĝ(x))||2 = 0, we have that f̂

is (globally) B-disentangled w.r.t. f (Definition 7.3) and, for all B ∈ B,

f̂ (B)(zB) = f (π(B))(v̄π(B)(zB)) + c(B), for all zB ∈ Ẑ train
B , (7.8)

where the functions v̄π(B) are from Defintion 7.3 and the vectors c(B) ∈ Rdx are constants such that∑
B∈B c

(B) = 0. We also have that the functions v̄π(B) : Ẑ train
B → Z train

π(B) are C2-diffeomorphisms

and have the following form:

v̄π(B)(zB) = (fπ(B))−1(f̂ (B)(zB)− c(B)), for all zB ∈ Ẑ train
B . (7.9)

Proof
Step 1 - Showing the permutation π does not change for different z. Theorem 7.1 showed

local B-disentanglement, i.e. for all z ∈ Ẑ train, Dv(z) has a B-block permutation structure. The
first step towards showing global disentanglement is to show that this block structure is the same for
all z ∈ Ẑ train (a priori, π could be different for different z). Since v is C2, its Jacobian Dv(z) is
continuous. Since Z train is path-connected, Ẑ train must also be since both sets are diffeomorphic. By
Lemma 7.5, this means the B-block permutation structure of Dv(z) is the same for all z ∈ Ẑ train

(implicitly using the fact that path-connected implies connected). In other words, there exists a
permutation π respecting B such that, for all z ∈ Ẑ train and all distinctB,B′ ∈ B, DBvπ(B′)(z) = 0.

315



Step 2 - Linking object-specific decoders. We now show that, for all B ∈ B, f̂ (B)(zB) =
f (π(B))(vπ(B)(z)) + c(B) for all z ∈ Ẑ train. To do this, we rewrite (7.50) as

Df̂ (J)(zJ) =
∑
B∈B

Df (B)(vB(z))DJvB(z) , (7.91)

but because B ̸= π(J) =⇒ DJvB(z) = 0 (block-permutation structure), we get

Df̂ (J)(zJ) = Df (π(J))(vπ(J)(z))DJvπ(J)(z) . (7.92)

The above holds for all J ∈ B. We simply change J by B in the following equation.

Df̂ (B)(zB) = Df (π(B))(vπ(B)(z))DBvπ(B)(z) . (7.93)

Now notice that the r.h.s. of the above equation is equal to D(f (π(B)) ◦ vπ(B)). We can thus write

Df̂ (B)(zB) = D(f (π(B)) ◦ vπ(B))(z) , for all z ∈ Ẑ train . (7.94)

Now choose distinct z, z0 ∈ Ẑ train. Since Z train is path-connected, Ẑ train also is since they are
diffeomorphic. Hence, there exists a continuously differentiable function ϕ : [0, 1]→ Ẑ train such
that ϕ(0) = z0 and ϕ(1) = z. We can now use (7.94) together with the gradient theorem, a.k.a. the
fundamental theorem of calculus for line integrals, to show the following∫ 1

0
Df̂ (B)(ϕB(z)) · ϕB(t)dt =

∫ 1

0
D(f (π(B)) ◦ vπ(B))(ϕ(z)) · ϕ(t)dt (7.95)

f̂ (B)(zB)− f̂ (B)(z0
B) = f (π(B)) ◦ vπ(B)(z)− f (π(B)) ◦ vπ(B)(z0) (7.96)

f̂ (B)(zB) = f (π(B)) ◦ vπ(B)(z) + (f̂ (B)(z0
B)− f (π(B)) ◦ vπ(B)(z0))︸ ︷︷ ︸

constant in z

(7.97)

f̂ (B)(zB) = f (π(B)) ◦ vπ(B)(z) + c(B) , (7.98)

which holds for all z ∈ Ẑ train.
We now show that

∑
B∈B c

(B) = 0. Take some z0 ∈ Ẑ train. Equations (7.49) & (7.98) tell us
that ∑

B∈B

f (B)(vB(z0)) =
∑
B∈B

f̂ (B)(z0
B) (7.99)

=
∑
B∈B

f (π(B))(vπ(B)(z0)) +
∑
B∈B

c(B) (7.100)

=
∑
B∈B

f (B)(vB(z0)) +
∑
B∈B

c(B) (7.101)

=⇒ 0 =
∑
B∈B

c(B) (7.102)
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Step 3 - From local to global disentanglement. By assumption, the functions f (B) : Z train
B →

Rdx are injective. This will allow us to show that vπ(B)(z) depends only on zB. We proceed by
contradiction. Suppose there exists (zB, zBc) ∈ Ẑ train and z0

Bc such that (zB, z
0
Bc) ∈ Ẑ train and

vπ(B)(zB, zBc) ̸= vπ(B)(zB, z
0
Bc). This means

f (π(B)) ◦ vπ(B)(zB, zBc) + c(B) = f̂ (B)(zB) = f (π(B)) ◦ vπ(B)(zB, z
0
Bc) + c(B)

f (π(B))(vπ(B)(zB, zB)) = f (π(B))(vπ(B)(zB, z
0
B))

which is a contradiction with the fact that f (π(B)) is injective. Hence, vπ(B)(z) depends only on zB .
We also get an explicit form for vπ(B):

(fπ(B))−1(f̂ (B)(zB)− c(B)) = vπ(B)(z) for all z ∈ Z train . (7.103)

We define the map v̄π(B)(zB) := (fπ(B))−1(f̂ (B)(zB)− c(B)) which is from Ẑ train
B to Z train

π(B). This
allows us to rewrite (7.98) as

f̂ (B)(zB) = f (π(B)) ◦ v̄π(B)(zB) + c(B) , for all zB ∈ Z train
B . (7.104)

Because f̂ (B) is also injective, we must have that v̄π(B) : Ẑ train
B → Z train

π(B) is injective as well.
We now show that v̄π(B) is surjective. Choose some zπ(B) ∈ Z train

π(B). We can always find zπ(B)c

such that (zπ(B), zπ(B)c) ∈ Z train. Because v : Ẑ train → Z train is surjective (it is a diffeomorphism),
there exists a z0 ∈ Ẑ train such that v(z0) = (zπ(B), zπ(B)c). By (7.103), we have that

v̄π(B)(z0
B) = vπ(B)(z0) . (7.105)

which means v̄π(B)(z0
B) = zπ(B).

We thus have that v̄π(B) is bijective. It is a diffeomorphism because

detDv̄π(B)(zB) = detDBvπ(B)(z) ̸= 0 ∀z ∈ Ẑ train (7.106)

where the first equality holds by (7.103) and the second holds because v is a diffeomorphism and
has block-permutation structure, which means it has a nonzero determinant everywhere on Ẑ train

and is equal to the product of the determinants of its blocks, which implies each block DBvπ(B)

must have nonzero determinant everywhere.
Since v̄π(B) : Ẑ train

B → Z train
π(B) bijective and has invertible Jacobian everywhere, it must be a

diffeomorphism.

A.9. Injectivity of object-specific decoders v.s. injectivity of their sum

We want to explore the relationship between the injectivity of individual object-specific decoders
f (B) and the injectivity of their sum, i.e.

∑
B∈B f

(B).
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We first show the simple fact that having each f (B) injective is not sufficient to have
∑

B∈B f
(B)

injective. Take f (B)(zB) = W (B)zB where W (B) ∈ Rdx×|B| has full column-rank for all B ∈ B.
We have that ∑

B∈B

f (B)(zB) =
∑
B∈B

W (B)zB = [W (B1) · · · W (Bℓ)]z , (7.107)

where it is clear that the matrix [W (B1) · · · W (Bℓ)] ∈ Rdx×dz is not necessarily injective even if
eachW (B) is. This is the case, for instance, if allW (B) have the same image.

We now provide conditions such that
∑

B∈B f
(B) injective implies each f (B) injective. We start

with a simple lemma:

Lemma 7.6. If g ◦ h is injective, then h is injective.

Proof By contradiction, assume that h is not injective. Then, there exists distinct x1, x2 ∈ Dom(h)
such that h(x1) = h(x2). This implies g ◦ h(x1) = g ◦ h(x2), which violates injectivity of g ◦ h.

The following Lemma provides a condition on the domain of the function
∑

B∈B f
(B), Z train, so

that its injectivity implies injectivity of the functions f (B).

Lemma 7.7. Assume that, for all B ∈ B and for all distinct zB, z
′
B ∈ Z train

B , there exists zBc

such that (zB, zBc), (z′
B, zBc) ∈ Z train. Then, whenever

∑
B∈B f

(B) is injective, each f (B) must be

injective.

Proof Notice that f(z) :=
∑

B∈B f
(B)(zB) can be written as f := SumBlocks ◦ f̄(z) where

f̄(z) :=


f (B1)(zB1)

...
f (Bℓ)(zBℓ

)

 , and SumBlocks(x(B1), . . . ,x(Bℓ)) :=
∑
B∈B

x(B) (7.108)

Since f is injective, by Lemma 7.6 f̄ must be injective.
We now show that each f (B) must also be injective. Take zB, z

′
B ∈ Z train

B such that
f (B)(zB) = f (B)(z′

B). By assumption, we know there exists a zBc s.t. (zB, zBc) and (z′
B, zBc) are

in Z train. By construction, we have that f̄((zB, zBc)) = f̄((z′
B, zBc)). By injectivity of f̄ , we have

that (zB, zBc) ̸= (z′
B, zBc), which implies zB ̸= z′

B, i.e. f (B) is injective.

A.10. Proof of Corollary 7.1

Corollary 7.1 (Cartesian-product extrapolation). Suppose the assumptions of Theorem 7.2 holds.

Then,

for all z ∈ CPEB(Ẑ train),
∑
B∈B

f̂ (B)(zB) =
∑
B∈B

f (π(B))(v̄π(B)(zB)) . (7.11)
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Furthermore, if CPEB(Z train) ⊆ Z test, then f̂(CPEB(Ẑ train)) ⊆ f(Z test).
Proof Pick z ∈ CPE(Ẑ train). By definition, this means that, for all B ∈ B, zB ∈ Ẑ train

B . We thus
have that, for all B ∈ B,

f̂ (B)(zB) = f (π(B)) ◦ v̄π(B)(zB) + c(B) . (7.109)

We can thus sum over B to obtain∑
B∈B

f̂ (B)(zB) =
∑
B∈B

f (π(B)) ◦ v̄π(B)(zB) +
∑
B∈B

c(B)

︸ ︷︷ ︸
=0

. (7.110)

Since z ∈ CPE(Ẑ train) was arbitrary, we have

for all z ∈ CPE(Ẑ train),
∑
B∈B

f̂ (B)(zB) =
∑
B∈B

f (π(B)) ◦ v̄π(B)(zB) (7.111)

f̂(z) = f ◦ v̄(z) , (7.112)

where v̄ : CPEB(Ẑ train)→ CPEB(Z train) is defined as

v̄(z) :=


v̄B1(zπ−1(B1))

...
v̄Bℓ

(zπ−1(Bℓ))

 , (7.113)

The map v̄ is a diffeomorphism since each v̄π(B) is a diffeomorphism from Ẑ train
B to Z train

π(B).
By (7.112) we get

f̂(CPEB(Ẑ train)) = f ◦ v̄(CPEB(Ẑ train)) , (7.114)

and since the map v̄ is surjective we have v̄(CPEB(Ẑ train)) = CPEB(Z train) and thus

f̂(CPEB(Ẑ train)) = f(CPEB(Z train)) . (7.115)

Hence if CPEB(Z train) ⊆ Z test, then f(CPEB(Z train)) ⊆ f(Z test).

A.11. Will all extrapolated images make sense?

Here is a minimal example where the assumption CPEB(Z train) ̸⊆ Z test is violated.

Example 7.10 (Violation of CPEB(Z train) ̸⊆ Z test). Imagine z = (z1, z2) where z1 and z2 are

the x-positions of two distinct balls. It does not make sense to have two balls occupying the

same location in space and thus whenever z1 = z2 we have (z1, z2) ̸∈ Z test. But if (1, 2) and

(2, 1) are both in Z train, it implies that (1, 1) and (2, 2) are in CPE(Z train), which is a violation of

CPEB(Z train) ⊆ Z test.
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A.12. Additive decoders cannot model occlusion

We now explain why additive decoders cannot model occlusion. Occlusion occurs when an
object is partially hidden behind another one. Intuitively, the issue is the following: Consider two
images consisting of two objects, A and B (each image shows both objects). In both images, the
position of object A is the same and in exactly one of the images, object B partially occludes object
A. Since the position of object A did not change, its corresponding latent block zA is also unchanged
between both images. However, the pixels occupied by object A do change between both images
because of occlusion. The issue is that, because of additivity, zA and zB cannot interact to make
some pixels that belonged to object A “disappear” to be replaced by pixels of object B. In practice,
object-centric representation learning methods rely a masking mechanism which allows interactions
between zA and zB (See Equation 7.1 in Section 7.2). This highlights the importance of studying
this class of decoders in future work.

B. Experiments

B.1. Training Details

Loss Function. We use the standard reconstruction objective of mean squared error loss between the
ground truth data and the reconstructed/generated data.
Hyperparameters. For both the ScalarLatents and the BlockLatents dataset, we used the Adam opti-
mizer with the hyperparameters defined below. Note that we maintain consistent hyperparameters
across both the Additive decoder and the Non-Additive decoder method.

ScalarLatents Dataset.

• Batch Size: 64
• Learning Rate: 1× 10−3

• Weight Decay: 5× 10−4

• Total Epochs: 4000
BlockLatents Dataset.

• Batch Size: 1024
• Learning Rate: 1× 10−3

• Weight Decay: 5× 10−4

• Total Epochs: 6000
Model Architecture. We use the following architectures for Encoder and Decoder across both the
datasets (ScalarLatents, BlockLatents). Note that for the ScalarLatents dataset we train with latent
dimension dz = 2, and for the BlockLatents dataset we train with latent dimension dz = 4, which
corresponds to the dimensionalities of the ground-truth data generating process for both datasets.
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Encoder Architecture:

• RestNet-18 Architecture till the penultimate layer (512 dimensional feature output)
• Stack of 5 fully-connected layer blocks, with each block consisting of Linear Layer (

dimensions: 512× 512), Batch Normalization layer, and Leaky ReLU activation (negative
slope: 0.01).
• Final Linear Layer (dimension: 512× dz) followed by Batch Normalization Layer to output

the latent representation.

Decoder Architecture (Non-additive):

• Fully connected layer block with input as latent representation, consisting of Linear Layer
(dimension: dz × 512), Batch Normalization layer, and Leaky ReLU activation (negative
slope: 0.01).
• Stack of 5 fully-connected layer blocks, with each block consisting of Linear Layer (

dimensions: 512× 512), Batch Normalization layer, and Leaky ReLU activation (negative
slope: 0.01).
• Series of DeConvolutional layers, where each DeConvolutional layer is follwed by Leaky

ReLU (negative slope: 0.01) activation.

– DeConvolution Layer (cin: 64, cout: 64, kernel: 4; stride: 2; padding: 1)
– DeConvolution Layer (cin: 64, cout: 32, kernel: 4; stride: 2; padding: 1)
– DeConvolution Layer (cin: 32, cout: 32, kernel: 4; stride: 2; padding: 1)
– DeConvolution Layer (cin: 32, cout: 3, kernel: 4; stride: 2; padding: 1)

Decoder Architecture (Additive): Recall that an additive decoder has the form f(z) =∑
B∈B f

(B)(zB). Each f (B) has the same architecture as the one presented above for the non-
additive case, but the input has dimensionality |B| (which is 1 or 2, depending on the dataset). Note
that we do not share parameters among the functions f (B).

B.2. Datasets Details

We use the moving balls environment from Ahuja et al. [2022b] with images of dimension
64× 64× 3, with latent vector (z) representing the position coordinates of each balls. We consider
only two balls. The rendered images have pixels in the range [0, 255].
ScalarLatents Dataset. We fix the x-coordinate of each ball to 0.25 and 0.75. The only factors
varying are the y-coordinates of both balls. Thus, z ∈ R2 and B = {{1}, {2}} where z1 and
z2 designate the y-coordinates of both balls. We sample the y-coordinate of the first ball from a
continuous uniform distribution as follows: z1 ∼ Uniform(0, 1). Then we sample the y-coordinate
of the second ball as per the following scheme:
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z2 ∼

Uniform(0, 1) if z1 ≤ 0.5

Uniform(0, 0.5) else

Hence, this leads to the L-shaped latent support, i.e., Z train := [0, 1]× [0, 1] \ [0.5, 1]× [0.5, 1].
We use 50k samples for the test dataset, while we use 20k samples for the train dataset along

with 5k samples (25% of the train sample size) for the validation dataset.
BlockLatents Dataset. For this dataset, we allow the balls to move in both the x, y directions, so
that z ∈ R4 and B = {{1, 2}, {3, 4}}. For the case of independent latents, we sample each latent
component independently and identically distributed according to a uniform distribution over (0, 1),
i.e. zi ∼ Uniform(0, 1). We rejected the images that present occlusion, i.e. when one ball hides
another one.2

For the case of dependent latents, we sample the latents corresponding to the first ball similarly
from the same continuous uniform distribution, i.e, z1, z2 ∼ Uniform (0, 1). However, the latents of
the second ball are a function of the latents of the first ball, as described in what follows:

z3 ∼

Uniform(0, 0.5) if 1.25× (z2
1 + z2

2) ≥ 1.0

Uniform(0.5, 1) if 1.25× (z2
1 + z2

2) < 1.0

z4 ∼

Uniform(0.5, 1) if 1.25× (z2
1 + z2

2) ≥ 1.0

Uniform(0, 0.5) if 1.25× (z2
1 + z2

2) < 1.0
Intuitively, this means the second ball will be placed in either the top-left or the bottom-right
quadrant based on the position of the first ball. We also exclude from the dataset the images
presenting occlusion.

Note that our dependent BlockLatent setup is same as the non-linear SCM case from Ahuja et
al. [Ahuja et al., 2023].

We use 50k samples for both the train and the test dataset, along with 12.5k samples (25% of
the train sample size) for the validation dataset.
Disconnected Support Dataset. For this dataset, we have setup similar to the ScalarLatents dataset;
we fix the x-coordinates of both balls to 0.25 and 0.75 and only vary the y-coordinates so that
z ∈ R2. We sample the y-coordinate of the first ball (z1) from Uniform(0, 1). Then we sample the
y-coordinate of the second ball (z2) from either of the following continuous uniform distribution
with equal probability; Uniform(0, 0.25) and Uniform(0.75, 1). This leads to a disconnected support
given by Z train := [0, 1]× [0, 1] \ [0.25, 0.75]× [0.25, 0.75].

2Note that, in the independent latents case, the latents are not actually independent because of the rejection step which
prevents occlusion from happening.
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We use 50k samples for the test dataset, while we use 20k samples for the train dataset along
with 5k samples (25% of the train sample size) for the validation dataset.

B.3. Evaluation Metrics

Recall that, to evaluate disentanglement, we compute a matrix of scores (sB,B′) ∈ Rℓ×ℓ where ℓ
is the number of blocks in B and sB,B′ is a score measuring how well we can predict the ground-truth
block zB from the learned latent block ẑB′ = ĝB′(x) outputted by the encoder. The final Latent
Matching Score (LMS) is computed as LMS = arg maxπ∈SB

1
ℓ

∑
B∈B sB,π(B), where SB is the set

of permutations respecting B (Definition 7.2). These scores are always computed on the test set.
Metric LMSSpear: As mentioned in the main paper, this metric is used for the ScalarLatents dataset
where each block is 1-dimensional. Hence, this metric is almost the same as the mean correlation
coefficient (MCC), which is widely used in the nonlinear ICA literature [Hyvarinen and Morioka,
2016, 2017, Hyvärinen et al., 2019, Khemakhem et al., 2020a, Lachapelle et al., 2022], with the
only difference that we use Spearman correlation instead of Pearson correlation as a score sB,B′ .
The Spearman correlation can capture nonlinear monotonous relations, unlike Pearson which can
only capture linear dependencies. We favor Spearman over Pearson because our identifiability
result (Theorem 7.2) guarantees we can recover the latents only up to permutation and element-wise
invertible transformations, which can be nonlinear.
Metric LMStree: This metric is used for the BlockLatents dataset. For this metric, we take sB,B′

to be the R2 score of a Regression Tree with maximal depth of 10. For this, we used the class
sklearn.tree.DecisionTreeRegressor from the sklearn library. We learn the pa-
rameters of the Decision Tree using the train dataset and then use it to evaluate LMStree metric on
the test dataset. For the additive decoder, it is easy to compute this metric since the additive structure
already gives a natural partition B which matches the ground-truth. However, for the non-additive
decoder, there is no natural partition and thus we cannot compute LMStree directly. To go around this
problem, for the non-additive decoder, we compute LMStree for all possible partitions of dz latent
variables into blocks of size |B| = 2 (assuming all blocks have the same dimension), and report the
best LMStree. This procedure is tractable in our experiments due to the small dimensionality of the
problem we consider.

B.4. Boxplots for main experiments (Table 7.1)

Since the standard error in the main results (Table 7.1) was high, we provide boxplots in Figures
7.9 & 7.10 to have a better visibility on what is causing this. We observe that the high standard error
for the Additive approach was due to bad performance for a few bad random initializations for the
ScalarLatents dataset; while we have nearly perfect latent identification for the others. Figure 7.14e
shows the latent space learned by the worst case seed, which somehow learned a disconnected
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Figure 7.9. Reconstruction mean squared error (MSE) (↓) and Latent Matching Score (LMS) (↑)
over 10 different random initializations for ScalarLatents dataset.
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(a) Independent Latent Case
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(b) Dependent Latent Case

Figure 7.10. Reconstruction mean squared error (MSE) (↓) and Latent Matching Score (LMS) (↑)
for 10 different initializations for BlockLatents dataset.

support even if the ground-truth support was connected. Similarly, for the case of Independent
BlockLatents, there are only a couple of bad random initializations and the rest of the cases have
perfect identification.

B.5. Additional Results: BlockLatents Dataset

To get a qualitative understanding of latent identification in the BlockLatents dataset, we plot the
response of each predicted latent as we change a particular ground-truth latent factor. We describe
the following cases of changing the ground-truth latents:

• Ball 1 moving along x-axis: We sample 10 equally spaced points for z1 from [0, 1]; while
keeping other latents fixed as follows: z2 = 0.25, z3 = 0.50, z4 = 0.75. We will never have
occlusion since the balls are separated along the y-axis z4 − z2 > 0.
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(a) Additive Decoder (Best) (LMSTree : 99.9)
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(b) Non-Additive Decoder (Best) (LMSTree : 83.9)
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(c) Additive Decoder (Median) (LMSTree : 99.8)
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(d) Non-Additive Decoder (Median) (LMSTree :
58.6)
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(e) Additive Decoder (Worst) (LMSTree : 54.1)
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(f) Non-Additive Decoder (Worst) (LMSTree : 24.6)

Figure 7.11. Latent responses for the cases with the best/median/worst LMSTree among runs
performed on the BlockLatent dataset with independent latents. In each plot, we report the latent
factors predicted from multiple images where one ball moves along only one axis at a time.

• Ball 2 moving along x-axis: We sample 10 equally spaced points for z3 from [0, 1]; while
keeping other latents fixed as follows: z1 = 0.50, z2 = 0.25, z4 = 0.75. We will never have
occlusion since the balls are separated along the y-axis z4 − z2 > 0.
• Ball 1 moving along y-axis: We sample 10 equally spaced points for z2 from [0, 1]; while

keeping other latents fixed as follows: z1 = 0.25, z3 = 0.75, z4 = 0.50. We will never have
occlusion since the balls are separated along the x-axis z3 − z1 > 0.
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(a) Additive Decoder (Best)

(b) Additive Decoder (Median)

(c) Additive Decoder (Worst)

Figure 7.12. Object-specific renderings with the best/median/worst LMStree among runs performed
on the BlockLatents dataset with independent latents. In each plot, the first row is the original
image, the second row is the reconstruction and the third and fourth rows are the output of the
object-specific decoders. In the best and median cases, each object-specific decoder corresponds
to one and only one object, e.g. the third row of the best case always corresponds to the red ball.
However, in the worst case, there are issues with reconstruction as only one of the balls is generated.
Note that the visual artefacts are due to the additive constant indeterminacy we saw in Theorem 7.2,
which cancel each other as is suggested by the absence of artefacts in the reconstruction.

• Ball 2 moving along y-axis: We sample 10 equally spaced points for z4 from [0, 1]; while
keeping other latents fixed as follows: z1 = 0.25, z2 = 0.50, z3 = 0.75. We will never have
occlusion since the balls are separated along the x-axis z3 − z1 > 0.

Figure 7.5 in the main paper presents the latent responses plot for the median LMStree case
among random initializations. In Figure 7.11, we provide the results for the case of best and the
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worst LMStree among random seeds. We find that Additive Decoder fails for only for the worst case
random seed, while Non-Additive Decoder fails for all the cases.

Additionally, we provide the object-specific reconstructions for the Additive Decoder in Fig-
ure 7.12. This helps us better understand the failure of Additive Decoder for the worst case random
seed (Figure 7.12c), where the issue arises due to bad reconstruction error.

B.6. Disconnected Support Experiments

Figure 7.13. Learned latent space, Ẑ train, and the corresponding reconstructed images of the additive
decoder with the median LMSSpear among runs performed on the Disconnected Support dataset.
The red dots correspond to latent factors used to generate the images.

Since path-connected latent support is an important assumption for latent identification with
additive decoders (Theorem 7.2), we provide results for the case where the assumption is not satisfied.
We experiment with the Disconnected Support dataset (Section B.2) and find that we obtain much
worse LMSSpear as compared to the case of training with L-shaped support in the ScalarLatents
dataset. Over 10 different random initializations, we find mean LMSSpear performance of 69.5 with
standard error of 6.69.

For better qualitative understanding, we provide visualization of the latent support and the
extrapolated images for the median LMSSpear among 10 random seeds in Figure 7.13. Somewhat
surprisingly, the representation appears to be aligned in the sense that the first predicted latent
corresponds to the blue ball while the second predicted latent correspond to the red ball. Also
surprisingly, extrapolation occurs (we can see images of both balls high). That being said, we
observe that the relationship between the predicted latent 2 (ẑ2) and y-coordinate of second (red)
ball is not monotonic, which explains why the Spearman correlation is so low (Spearman correlation
scores are high when there is a monotonic relationship between both variables).
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B.7. Additional Results: ScalarLatents Dataset

To get a qualitative understanding of extrapolation, we plot the latent support on the test dataset
and sample a grid of equally spaced points from the support of each predicted latent on the test
dataset. The grid represents the cartesian-product of the support of predicted latents and would
contain novel combinations of latents that were unseen during training. We show the reconstructed
images for each point from the cartesian-product grid to see whether the model is able to reconstruct
well the novel latent combinations.

Figure 7.4 in the main paper presents visualizations of the latent support and the extrapolated
images for the median LMSSpear case among random seeds. In Figure 7.14, we provide the results
for the case of best and the worst LMSSpear among random seeds. We find that even for the best case
(Figure 7.14b), Non-Additive Decoder does not generate good quality extrapolated images, while
Additive Decoder generates extrapoalted images for the best and median case. The worst-case run
for the Additive Decoder has disconnected support, which explains why it is not able to extrapolate.
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(a) Additive Decoder (Best) (LMSSpear : 99.9) (b) Non-Additive Decoder (Best) (LMSSpear : 99.9)

(c) Additive Decoder (Median) (LMSSpear : 99.9)
(d) Non-Additive Decoder (Median) (LMSSpear :
76.1)

(e) Additive Decoder (Worst) (LMSSpear : 69.5) (f) Non-Additive Decoder (Worst) (LMSSpear : 39.8)

Figure 7.14. Figure (a, c, e) shows the learned latent space, Ẑ train, and the corresponding re-
constructed images of the additive decoder with the best/median/worst LMSSpear among runs
performed on the ScalarLatents dataset. Figure (b, d, f) shows the same thing for the non-additive
decoder. The red dots correspond to latent factors used to generate the images and the yellow square
highlights extrapolated images.
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Chapter 8

An End in Itself? Interpretations of Identifiability and
Motivations for Generalization Guarantees

Suppose you have two theories, A and B, which look completely different psycho-

logically, with different ideas in them and so on, but that all the consequences that

are computed from each are exactly the same, and both agree with experiment. [...]

How are we going to decide which one is right? There is no way by science, because

they both agree with experiment to the same extent. [...] However, for psychological

reasons, in order to guess new theories, these two may be very far from equivalent,

because one gives a man different ideas from the other. [...] There are certain

ways of changing one which looks natural which will not look natural in the other.

— Feynman [1965, p. 168]

This thesis has focused on the question of identifiability both in causal discovery (Chapters 3
& 4) and representation learning (Chapters 5, 6 & 7). In this chapter, I motivate the study of
identifiability further both as an end in itself (Section 8.1) and as a means to an end (Section 8.2).

In Section 8.1, I list three possible ways identifiability guarantees can be interpreted, namely the
realist interpretation, the independent-learner interpretation, and the interpretability interpretation,
of which the first two are largely based on the work of Gresele [2023]. All three interpretations
correspond to different reasons one might care about identifiability as an end in itself. Indeed,
the first interpretation views identifiability as a way to uncover causal or physical structure about
how the world works. The second one sees identifiability as a desirable property of a statistical
model that informs us about how multiple reruns of the same algorithm yield more or less similar
models/representations. The third one sees identifiability as a way to obtain models that can easily
be interpreted by a machine learning practitioner.

In Section 8.2, I provide multiple mathematically concrete settings, mainly based on the
contributions of this thesis, where an identifiability result is instrumental to prove a downstream



performance guarantee. We will see that identifiability appears as an intermediate step when
going from assumptions about the data to generalization guarantees (Figure 8.1). In other words,
identifiability is seen as a means to an end, as opposed to something desirable in and of itself. I
consider four seemingly unrelated problem settings, namely causal discovery, additive decoders for
extrapolation, sparse multitask learning and semi-supervised learning via clustering; and unify them
under the umbrella of statistical decision theory (Section 2.2). Moreover, I identify three general
steps that appear in all four settings provided: (i) Choose assumptions suitable for the problem at
hand postulating that some unknown structure is present in the data, (ii) show that this structure
can be recovered from data via an identifiability analysis, and (iii) leverage the learned structure to
provide generalization guarantees on the downstream task. These three steps as well as how they
apply to the four settings considered here are summarized in Table 8.1.

8.1. Three interpretations of identifiability
Probability theory is a mathematical framework aimed at describing the uncertainty we face in

the real world. It can be used to describe different types of uncertainty, i.e. it can be interpreted
in various ways. For instance, the frequentist interpretation of probability states that uncertain
experiments can be repeated multiple times and that a probability of some event occurring is the
proportion of times the event would occur if one would repeat the experiment infinitely many times.
A standard example of such an experiment is a coin flip which, intuitively, can be repeated as many
times as one has patience for. In contrast, the Bayesian interpretation sees a probability as a precise
description of a belief. For instance, someone might believe that there is 90% chance that tomorrow
will be rainy in Montreal. In this case, the probability of rain captures a subjective belief and not the
result of an infinitely repeatable experiment (one could argue that tomorrow occurs only once and is
thus not repeatable). The same mathematical framework is used in two different ways to describe
the world.

In this section, I argue that identifiability guarantees, which are mathematical statements, can be
interpreted in different ways, analogously to how probability theory has different interpretations. I
describe three interpretations of identifiability: the realist interpretation, the independent learners

interpretation and the interpretability interpretation. I emphasize that the first two correspond
respectively to the cocktail-party and the independent-listeners metaphors discussed by Gresele
[2023].

To make the discussion more concrete, I focus on identifiability in representation learning,
especially up to permutation and element-wise transformations, although I believe this discussion
applies more broadly for instance in causal discovery or clustering. Recall the formal definition of
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identifiability in this context, which was introduced in Section 2.5.1:

∀(f ,Pz) ∈ F × P , (f̂ , P̂z) ∈ F̂ × P̂ ,P(f ,Pz) = P(f̂ ,P̂z) =⇒ f = f̂ ◦ d ◦ P , (8.1)

where F and F̂ and function classes for the decoder f and P and P̂ are hypothesis classes for the
distribution over the latent vector z. As discussed in Section 2.5.1, identifiability guarantees are
typically asymmetric in the sense that F × P is a proper subset of F̂ × P̂ .

8.1.1. The realist interpretation

In the realist interpretation, the model (f ,Pz) ∈ F × P is thought of as a ground-truth model
that represents faithfully a physical or causal process giving rise to the distribution over observations
P(f ,Pz), while (f̂ , P̂z) ∈ F̂ × P̂ is thought of as a model fitted to the observations such that
P(f̂ ,P̂z) = P(f ,Pz). The identifiability guarantee then states that the learned representation f̂ is the
same as the ground-truth representation f up to some indeterminacy. In this interpretation, the
learned model has discovered something “physical” about how the data came about, which of course
might be of scientific interest.

Gresele [2023] discussed this interpretation and brought up the well-known cocktail party
problem as an example where it applies. In the cocktail party problem, the learner must separate
audio signals produced by multiple people based on audio signals captured by multiple microphones
positioned in the room where the party is taking place. The signals produced by the attendees
are then modelled by the latent vector z (each dimension corresponds to an attendee) and the
recorded signal is given by x (each dimension corresponds to a microphone).1 The underlying
assumption is that, the signal recorded by one microphone is a linear combination of the signals
emitted by the attendees, where the coefficients are functions of the distance between an attendee
and a microphone. We can thus say that x = Az for some matrixA. Assuming the signal emitted
by the attendees are independent and non-Gaussian, one can apply the standard linear ICA result to
guarantee identifiability of the latent factors up to permutation and rescaling.

In this previous example, the ground-truth model x = Az is an actual physical description of
what the microphones record as a function of the signals z. In that sense, there is truly a ground-truth
model that one aims to recover. The assumptions on this ground-truth model is given by F and
P and one can think of these as assumptions about how the world is. The assumption that A is
invertible is in fact an assumption about the spatial configuration of the microphones relative to the
attendees. The assumption that the latent factors are non-Gaussian is an assumption about what the
attendees are actually saying.

1Audio signals usually unroll in time so that xt = Azt where t is a time index. This slight complication is avoided to
simplify the discussion.
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8.1.2. The independent-learners interpretation

Gresele [2023] suggested a second interpretation based on a variant of the cocktail-party problem
in which the same recorded audio signals are processed by different learners, or “listeners”. In this
interpretation, (f ,Pz) and (f̂ , P̂z) have similar status, they both correspond to models outputted
by two different learners fitted on the same ground-truth distribution Px. More precisely, we can
imagine that both algorithms consist in searching in the space F̂ × P̂ for a model that fits the
ground-truth distribution exactly. If F̂ × P̂ is expressive enough to represent the ground-truth
distribution Px, we must have that P(f̂ ,P̂z) = Px = P(f ,Pz). Note that even if both models represent
the data distribution exactly, this does not mean that the generative process assumed by the models
represent anything physical or causal about how the data came about, in contrast with the realist
interpretation of Section 8.1.1. Now, to apply the identifiability guarantee, we must assume that
one of the models is in F × P , which is typically a proper subset of F̂ × P̂ . Again, this is not an
assumption about how the data is generated, it is an assumption about one of the model outputted
by both instantiations of the same algorithm. In that case, the identifiability result informs us that
both models are “the same” up to some equivalence relation. In some sense, this interpretation is
more down-to-earth and operational in the sense that it does not claim to uncover something “real”
about how the data is generated, but only states that, if two instantiations of the same algorithm
end up with the same observation model, then we can relate their representations via a simple
transformation, like permutation-scaling for instance. I claim that such a property is necessary for a
model to be interpretable since if it does not hold, different reruns of the same algorithm (say with
different initialization) might end up with drastically different representations and thus different
interpretations.2

8.1.3. The interpretability interpretation

I propose a third interpretation which sees identifiability as a guarantee that a model will be
interpretable. Let us start by postulating that a machine learning practitioner considers some
representation to be natural and let f be the mapping from what they consider to be the natural
factors of variations, z, to the observations, x. This mapping can be thought of as existing in the
mind of the practitioner, without necessarily representing a causal or physical process that is truly
present in the real world. Then, a candidate decoder f̂ (for instance learned with data) is said to be
interpretable if it can be related to the decoder of the practitioner by a permutation composed with
an element-wise invertible transformation, i.e. f = f̂ ◦ d ◦P . In other words, the representation of
a model is interpretable if its coordinates can be permuted and transformed (bijectively) to match
the factors of variations the practitioner considers natural. This captures the idea that someone

2I am sweeping under the rug important considerations such as whether the algorithm reaches the global optimum and
the fact that we train only on finite datasets.
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considers a representation interpretable when it relates to their own internal representation via a
simple transformation. We can then go further and assume that f is part of the world model of
the practitioner given by P(f ,Pz). We further assume that this internal model exactly matches the
ground-truth distribution over observations, i.e. P(f ,Pz) = Px. Similarly to the second interpretation,
there is no need to assume that the model x = f(z) is “causal” or represents anything physical about
the world. By assuming that the model also fits the data exactly, i.e. P(f̂ ,P̂z) = Px, identifiability
guarantees that the resulting representation f̂ will be interpretable in the sense that f = f̂ ◦ d ◦ P .
In this view, assuming that (f ,Pz) ∈ F × P is actually an assumption about the internal world
model of the practitioner. More precisely, f ∈ F states that the relationship between what the
practitioner considers to be natural factors of variations and the observations satisfies some specific
constraint, e.g. diffeomorphism, additive or sparse. Additionally, Pz ∈ P enforces constraints on
how the natural factors of variation are distributed in the internal world model of the practitioner,
e.g. independent, non-Gaussian or sparsely connected in time.

Note that, even if we avoided the need to assume the existence of a specific ground-truth
data-generating process, the assumption that P(f ,Pz) = Px is strong since it postulates that the
ground-truth distribution Px can be expressed with a model of the form x = f(z). But I stress the
fact that this is different from saying that x = f(z) is a causal model describing how the distribution
Px came about, as was the case in the realist interpretation. I hypothesize that an approximate fit
such as P(f ,Pz) ≈ Px ≈ P(f̂ ,P̂z) might be enough to guarantee “approximate interpretability” of the
form f ≈ f̂ ◦ d ◦ P . However, proving such approximate identifiability guarantees remains an
important open question.

One could argue that the interpretability interpretation is in fact a special case of the independent-
learners interpretation. After all, the machine learning practitioner can be viewed as a second
“independent learner” applying their own algorithm to model the world.3 This is a valid point,
but I still consider the interpretability interpretation to be useful on its own as it provides a more
human-centric perspective to identifiability which may guide us differently as we explore the space
of possible assumptions for such generative models. It leads to questions such as “What are the
properties of the representations we humans deem natural and/or interpretable?” for which we can
propose answers that can be encoded into both F and P .

8.2. From identifiability to generalization guarantees
As pointed out in the very first citation of this thesis from David Hume, inductive reasoning is

impossible without assuming some kind of uniformity in nature, i.e. without making assumptions
about how the world works. Once we postulate that some set of assumption holds, we can sometimes

3It was Luigi Gresele who raised this concern in a discussion we had at the Third Bellairs Workshop on Causality in
Barbados (2024).
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use deductive reasoning to prove that a given algorithm is guaranteed to perform well in a given
setting. The goal of this section is to argue that identifiability guarantees, which are the focus of
this thesis, can be a useful intermediate step along the chain of deductions linking assumptions to
generalization guarantees (Figure 8.1). To support this claim, we identify this pattern across four
seemingly different problem settings, namely causal discovery (Section 8.2.1), additive decoders for
extrapolation (Section 8.2.2), sparse multitask learning (Section 8.2.3) and semi-supervised learning
via clustering (Section 8.2.4). I spell out three simple “steps” that are common to all four examples
and clarify where and how identifiability can be used to prove generalization guarantees. I now
describe these three steps abstractly and delay how they apply to each problem settings to later in
the section (also see Table 8.1 for a summary).

• Step 1: Choose assumptions. The first step is to choose some set of assumptions reasonable
for the task at hand. These assumptions postulate that some unknown structure gives rise to
both the observed data and the downstream task we wish to solve.
• Step 2: Prove identifiability. Using the assumptions from Step 1, we prove that the

structure can be recovered from the data available, up to some equivalence class. This is the
identifiability guarantee.
• Step 3: Prove generalization. Leverage the assumptions of Step 1 and the knowledge of

the identified structure from Step 2 to conclude that the algorithm will perform well on
some downstream task.

The meaning of these different steps will be become more transparent once we see how they apply
to more concrete examples, as summarized in Table 8.1. Before going further, notice that the
standard supervised machine learning setting with i.i.d. samples fits in this framework. Indeed,
Step 1 consists in assuming that all samples (x(i), y(i)) from the training set are independently
and identically distributed and, crucially, that this is also true of future samples encountered at
testing time. Step 2 here is fairly trivial, since it is clear that one can identify p(y | x) from p(x, y),
which is enough to get perfect prediction. In Step 3, we leverage the knowledge of p(y | x) and
the assumption that the distribution does not change between training and test time to make good
predictions at test time, which here is the downstream task. Although a lot can be said about this
setting in the finite-data regime (e.g. about the bias-variance trade-off), the infinite-data regime
is rather trivial, since the only structure that one leverages is the fact that the data is i.i.d. at both
training and testing time, which makes the identifiability question obvious (we can clearly identify
p(y | x) from p(x, y)). In this section, I concentrate on settings with more interesting structure that
can be identified and leveraged for downstream performance, where “downstream” typically means
“a task that somewhat differs from the one(s) observed at training time”.

I will analyze all four settings using the framework of statistical decision theory encountered in
Section 2.2, which we briefly review next.
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Generalization

Step 1 Step 2 Step 3

Identifiability 
guarantee Knowledge of 

the structureAssumptions

Figure 8.1. Graphical representation of the deduction steps to obtain generalization guarantees
from identifiability guarantees.

Statistical decision theory. The state of the world is captured by θ which is assumed to live in
some space Θ. A decision maker must choose an action a in a space of actions A. A loss function
ℓ(θ,a) dictates which cost is incurred based on both the state of the world θ and the action a. The
decision maker can base its decision on an observable O which is related to θ in some way. The
standard framework assumes that, for each state of the world θ ∈ Θ, there is a distribution Dθ
capturing the uncertainty of O, i.e. O ∼ Dθ. In this framework, O is typically a dataset of samples.
Since we concentrate on identifiability, which focuses on the infinite-data regime, we will allow O

to be a full distribution over observations. In some cases, O will also contain finite datasets, namely
in Sections 8.2.3 & 8.2.4. Based on the observable O, a decision rule δ must output an action a ∈ A.
Putting everything together, we can evaluate a decision rule δ by analyzing ℓ(θ, δ(O)), which (i)
is potentially random since O is potentially random, and (ii) depends on the state of the world θ,
which is unknown. In Section 2.2, we provide a few classical statistical problems that can be framed
within statistical theory and briefly discuss different ways one can aggregate ℓ(θ, δ(O)) over both
the uncertainty of O and θ in order to compare rules.

The framework of statistical decision theory will allow us to unify all settings and formalize our
goal more clearly. Assumptions about the unknown structure from Step 1 can be encoded in the
state of the world θ and how it gives rise to both the observable O and the final loss function ℓ(θ,a).
The loss function ℓ(θ,a) provides a performance metric for the downstream task we care about. In
each setting, we will study different decision rules δ and show how identifiability guarantees can be
used to obtain performance guarantees, as measured by ℓ(θ,a).

8.2.1. Causal discovery

In Chapters 3 & 4, I proposed novel algorithms to learn a causal graph with or without interven-
tional data. In both cases, the approach is always based on some identifiability guarantee providing
sufficient conditions so that the causal graph can be recovered either fully, or up to some equivalence
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Problem setting Step 1: Choose assumptions Step 2: Prove identifiability Step 3: Prove generalization

Causal discovery
(Chapters 3 & 4)

In the correct causal fac-
torization, interventions
leave many conditional
distributions invariant

Causal graph is identifiable
from data (potentially inter-
ventional)

Leverage causal graph to pre-
dict the effect of unseen inter-
ventions

Additive decoders
for extrapolation
(Chapter 7)

Images consisting of multi-
ple objects have an (almost)
additive structure

Additive structure is identifi-
able from data

Leverage additive structure
for Cartesian-product extrap-
olation

Sparse multitask
learning
(Chapter 6)

Multiple prediction tasks can
be solved using a shared rep-
resentation and each task re-
quires only a few features
(sparse task)

This representation is identi-
fiable up to permutation and
rescaling

Leverage the disentangled
representation to solve a
novel sparse task with fewer
samples

Semi-supervised
learning w/ clustering

The cluster assumption: data
points that belong to the
same cluster are likely to
have the same label

The clusters are idenfiable
from a large dataset of unla-
beled samples

Leverage knowledge of the
clusters to learn with fewer
labelled samples

Table 8.1. Summary of the 3-steps procedure to deduce generalization guarantees from assumptions
via identifiability results. The table shows how they apply to the four problem settings covered in
this chapter. These steps are detailed in Section 8.2.

class. In both of these works, the main method of evaluation is to measure some notion of distance
between the ground-truth and estimated graphs. In this section, instead of focusing on identifying
the causal graph as an end in itself, the focus is placed on what can be done with the estimated
graph, namely, predicting the effect of interventions that were never observed before. As for the
next problem settings considered in this chapter, I use the language of statistical decision theory to
formulate our goal.

Problem setting and “state of the world” θ. We assume that the vector of observations x ∈ Rdx

is modelled by a causal graphical model (CGM) with causal graph G and causal mechanisms
fj(xj | xπG

j
) for all j ∈ {1, ..., dx}, where we are using the notation introduced in Section 2.3.

This induces an observational density function p(x) :=
∏d

j=1 fj(xj | xπG
j
), which we assume puts

probability mass everywhere on Rdx . Note that we implicitly assume causal sufficiency, i.e. there is
no hidden variable causing more than one observed variable. Here, the “state of the world” is given
by the CGM itself, i.e.

θ := (G, {fj(xj | xπG
j
)}dx

j=1) . (8.2)

A CGM allows us to describe the effect of interventions. For simplicity, we consider only
perfect and deterministic interventions, so that an intervention is characterized by (i) a set of targeted
variables and (ii) their respective values during the intervention. Let I ⊆ {1, ..., dx} be a set of
targets and x0 ∈ Rdx the vector of corresponding target values (note that only x0

I will be relevant).
An intervention is thus completely characterized by (I,x0). If |I| = 1, we say the intervention is
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single-target, otherwise we say it is multi-target. The interventional distribution for (I,x0) is given
by:

p(I,x0)(x) :=
∏
j ̸∈I

fj(xj | xπG
j
)
∏
j∈I

1[xj = x0
j ] . (8.3)

See Section 2.3 for more details on CGMs.

Loss function ℓ(θ,a). The goal of the decision maker is to output a CGM

a := (Ĝ, {f̂j(xj | xπĜ
j

)}dx
j=1) ,

which is capable of predicting the effect of any possible intervention. This is captured, for example,
by the following loss:

ℓ(θ,a) :=
∑

I∈P([dx])

max
x0

DKL(p(I,x0) ∥ p̂(I,x0)) (8.4)

where P([dx]) is the power set of [dx] = {1, ..., dz} and p̂(I,x0) is the interventional density of the
estimated model a := (Ĝ, {f̂j(xj | xπĜ

j

)}dx
j=1) under intervention (I,x0). In some settings, one

might not care about all possible interventions and might instead focus only on a subset, in which
case the loss could be adjusted accordingly.

Observable O. In Chapter 3, the learner has only access to samples from the observational
distribution, while in Chapter 4 it has access to multiple interventional distributions. We will focus
on the latter case here. We assume the learner observes a list of interventions given by

O := {(I0, p
(I0,x0

0)(x)), (I1, p
(I1,x0

1)(x)), . . . , (IK , p
(IK ,x0

K)(x))} , (8.5)

where I0 = ∅, i.e. it corresponds to the observational distribution.

Decision rule δ. In Chapter 4, we suggest the following decision rule:

δλ(O) := arg max
Ĝ∈DAG,{f̂j}j

K∑
k=0

Ex∼p(k) log p̂(k)(x)− λ|G| , (8.6)

where p(k) and p̂(k) are the kth interventional density of the ground-truth and learned model,
respectively. Furthermore, |G| is the number of edges in G and λ > 0 is a regularization coefficient.

The 3 steps to generalization. I spell out the three steps to prove generalization to unseen
interventions:

• Step 1: Choose assumptions. We assume that interventions performed in the real world
are well modelled by interventions in a CGM (Section 2.3). More precisely, we assume
the existence of a graph G such that the conditionals f(xi | xπG

i
) do not change across

interventions in which xi is not intervened upon.
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• Step 2: Prove identifiability. Theorem 4.1 provides conditions so that the causal graph
estimated by the decision rule δλ must be I-Markov equivalent to the ground-truth (see
Chapter 4 for details). When we have sufficiently many interventions, the I-Markov
equivalence class becomes a singleton, meaning we identify the ground-truth graph exactly.
• Step 3: Prove generalization. Since the learned causal graph Ĝ matches the ground-truth

graph G exactly, the learned model will correctly predict the effect of unseen interventions,
i.e. p(I,x0) = p̂(I,x0) for all interventions (I, x0), which implies ℓ(θ, δλ(O)) = 0.

8.2.2. Additive decoders for extrapolation

In Chapter 7, we showed how solving a simple reconstruction task with an additive decoder

can yield a disentangled representation which allows for a form of extrapolation we call Cartesian-

product extrapolation. In this section, I formulate this extrapolation problem within statistical
decision theory.

Problem setting and “state of the world” θ. I briefly recall the setting of Chapter 7. The set of
possible observations, e.g. images, is given by a lower dimensional manifold f(Z test) embedded
in Rdx where Z test is an open set of Rdz and f is a C2-diffeomorphism onto its image. We will
refer to f as the ground-truth decoder. At this stage, we have not specified any distribution over
the possible observations, we have simply assumed that they are supported on a lower dimensional
manifold. We will further assume that, at training time, the observations x are i.i.d. samples given
by x = f(z) where z, the vector of ground-truth latent factors, is distributed according to the
probability measure Ptrain

z with support Z train ⊆ Z test. A key aspect of the framework is that we
allow for Z train ̸= Z test, i.e. not all possible observations are revealed at training time. To allow for
disentanglement and Cartesian-product extrapolation, we further assume that f is additive in the
sense that f(z) =

∑
B∈B f

(B)(zB) where B := {B1, ..., Bℓ} is a partition of {1, 2, . . . , dz}. The
state of the world is thus given by

θ := (Ptrain
z ,f : Z test → Rdx) . (8.7)

Loss function ℓ(θ,a). The goal of the learner is to output an encoder-decoder pair (ĝ, f̂) that
can “extrapolate” beyond the support of observed data seen during training, i.e. f(Z train). We
will formalize this goal with the loss function ℓ(θ, (ĝ, f̂)). Let Ẑ train := ĝ(f(Z train)), i.e. the
support of estimated latent factors seen during training. Furthermore, recall the definition of the
Cartesian-product extension of a set Z ⊆ Rdz :

CPEB(Z) :=
∏
B∈B

ZB ,where ZB := {zB | z ∈ Z}. (8.8)

See Figure 7.3 for an illustration of the CPE. Note that ZB is the projection of Z on the coordi-
nates i in B. With this notation in hand, we can specify our loss function for Cartesian-product
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extrapolation:

ℓ(θ, (ĝ, f̂)) := max
z∈CPEB(Z train)

min
ẑ∈CPEB(Ẑ train)

∥f(z)− f̂(ẑ)∥2
2 , (8.9)

so that the loss is zero if and only if, for all z in the Cartesian-product extension of Z train, there
exists a ẑ in the Cartesian-product extension of Ẑ train such that f(z) = f̂(ẑ). Essentially, this loss
measures how well the learned decoder f̂ can produce observations that agree with the ground-truth
model, even if these observations were never seen at training time. We assume implicitly that the
max and min exist, which would be the case, for example, if Z train and Ẑ train are compact and f
and f̂ are continuous.

Note that, a priori, this loss function “does not care” whether f̂ is disentangled or not. In
principle, one could choose f̂ to be entangled w.r.t. f , but still have a zero loss.

Observable O. For this setting, the only thing the learner has access to is the distribution over
observations, i.e. Ptrain

x := f(Ptrain
z ) (the pushforward measure):

O := Ptrain
x . (8.10)

Decision rule δ. The decision rule suggested in Chapter 7 is simply to solve the reconstruction
problem:

δF(O) := arg min
(ĝ,f̂)∈G×F

Etrain∥x− f̂(ĝ(x))∥2
2 , (8.11)

where G is a class of functions from Rdx to Rdz and F is a class of functions from Rdz to Rdx .
The main contributions of Chapter 7 are to (i) provide conditions on Ptrain

z , f , and F so that the
learned decoder f̂ is disentangled, and (ii) further show that these conditions are also sufficient for
Cartesian-product extrapolation. The central assumption making both of these possible is additivity.
Indeed, among other assumptions, we require both the ground-truth decoder f and the function
class F to be additive.

The 3 steps to generalization. We spell out the 3 steps leading to extrapolation guarantees in this
problem setting:

• Step 1: Choose assumptions. Simple images consisting of multiple objects have an additive
structure in the sense that they are well modelled by x =

∑
B∈B f

(B)(zB) where z is a
random vector.
• Step 2: Prove identifiability. Chapter 7 shows the representation is identifiable up to

permutation of the blocks and block-wise invertible transformations.
• Step 3: Prove generalization. This identifiability results leads to Corollary 7.1 which states

that there exists a diffeomorphism v̄ : CPEB(Z train)→ CPEB(Ẑ train) such that

for all z ∈ CPEB(Z train), f(z) = f̂(v̄(z)) . (8.12)
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This is extrapolation since the learned decoder f̂ imitates the ground-truth one, not only
on Z train but over all of its CPE. Note that (8.12) implies the extrapolation loss ℓ(θ, δF(O))
defined earlier must be zero. Indeed, for each z ∈ CPEB(Z train), we can take ẑ := v̄(z) ∈
CPEB(Ẑ train) so that ∥f(z)− f̂(ẑ)∥2

2 = 0. Importantly, this is possible only because F is
restricted to additive decoders. Without such a restriction, the behavior of f̂ outside Ẑ train is
unrestricted, meaning it could be arbitrarily different from f .

8.2.3. Sparse multi-task learning

I review the setting of Chapter 6 and express it in the language of statistical learning theory. The
contribution of Chapter 6 is separated in two major points: First, we showed that, in a few-shot
learning setting, a disentangled representation combined with sparsity regularization can offer
benefits in terms of sample complexity, i.e. the number of samples required for learning is reduced.
Secondly, we showed how one can learn a disentangled representation via sparse multitask learning.
In this section, I combine both of these into a single decision rule which:

(1) learns a disentangled representation f̂ using sparse multi-task learning; and
(2) leverages this representation to perform well in an unseen few-shot task.

Problem setting and “state of the world” θ. I start by recalling the setting at hand. We assume
the learner observes a family of prediction tasks parameterized by W ∈ W ⊆ Rk×m where the
input-label pairs (x, y) are i.i.d. samples from

p(x, y |W ) := p(y | x,W )p(x |W ) (8.13)

with p(y | x,W ) := p(y;η = Wf(x)) , (8.14)

where p(y;η) is a density/probability mass function parameterized by η ∈ Rk. The key idea is that
the conditional distribution of y given x is modulated via Wf(x) where W can change across
tasks while the representation f is shared across tasks. We also assume that, for each task, the
parameterW is sampled i.i.d. from some distribution PW . One of the key assumption is that PW
puts nonzero probability mass on sparse parametersW , modelling the assumption that, for a given
task, only a few features are useful. We will also denote byWnew the task-specific weight matrix
for the unseen few-shot task (second step mentioned above). The learner will have access to a small
dataset of n input-label pairs sampled from this task:

Dnew := ((xi, yi))n
i=1 ∼

n∏
i=1

p(yi,xi |Wnew) . (8.15)

We are now in a position to specify the “state of the world” θ for this specific setting.

θ := (f ,PW , p(y;η), p(x |W ),Wnew) (8.16)
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Loss function ℓ(θ,a). The end goal here will be to decide on a representation f̂ and a parameter
Ŵnew, the latter of which is specific to the unseen task p(x, y |Wnew). We will take the loss to be
the negative log-likelihood averaged over the whole test distribution. More precisely, we have

ℓ(θ, (f̂ , Ŵnew)) := −Ep(x,y|Wnew) log p(y; Ŵnewf̂(x)) . (8.17)

The above is essentially a measure of how well (f̂ , Ŵnew) performs on the new taskWnew.

Observables O. Before specifying the observables O, we recall a crucial identifiability result
from Chapter 6. This chapter introduced two similar results guaranteeing the identifiability of f
up to permutation and rescaling, namely Theorems 6.1 & 6.4. Because the latter requires less
hyperparameters, it will be the focus of this section, out of a desire for simplicity. We restate
Theorem 6.4, which was introduced in Appendix B.2 of Chapter 6, in an adapted form:

Theorem 8.1 (Sparse multitask learning for disentanglement). Let f̂α be a minimizer of

min
f̂∈F

EPW
Ep(x,y|W ) − log p(y; Ŵ (W )f̂(x))

s.t. ∀W ∈ W , Ŵ (W ) ∈ arg min
W̃

Ep(x,y|W ) − log p(y; W̃ f̂(x))

EPW
∥Ŵ (W )∥2,0 ≤ α ,

(8.18)

where PW and p(x, y |W ) are described above. Under Assumptions 6.3, 6.4, 6.5, 6.6, 6.7 and if

all functions in F are continuous and α = EPW
∥W ∥2,0, f̂α is disentangled w.r.t. f (Definition 6.1).

Without restating all assumptions precisely, we simply recall that Assumptions 6.3 to 6.7
concern the task and data-generating distributions PW and p(x, y |W ), including the ground-truth
representation f . The theorem guarantees that f̂α(x) = DPf(x) for all x in the support of
p(x |W ) (which we assume is shared acrossW ), for some diagonal matrixD and permutation
matrix P .

The framework of statistical decision theory requires us to be precise about what is observed
by and hidden from the learner. The distributions PW and p(x, y | W ) appear in Problem 8.18,
which falsely suggests the learner must observe W . If that were the case, it would be absurd to
learn a Ŵ for every W as we do here. It turns out we can rewrite Problem 8.18 in a way that
makes it clear that the learner does not need to know aboutW . The idea is to perform a change of
variable T = ϕ(W ) where ϕ is some bijective function unknown to the learner. This of course
induces a new measure QT := ϕ(PW ) with support T := ϕ(W) and a new conditional distribution
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q(x, y | T ) := p(x, y | ϕ−1(T )). With this new notation, we can rewrite Problem 8.18 as

min
f̂∈F

EQT
Eq(x,y|T ) − log p(y; Ŵ (T )f̂(x))

s.t. ∀ T ∈ T , Ŵ (T ) ∈ arg min
W̃

Eq(x,y|T ) − log p(y; W̃ f̂(x))

EQT
∥Ŵ (T )∥2,0 ≤ α .

(8.19)

One should think of T as a special task index belonging to an uncountable4 space T = ϕ(W)
distributed according to QT . Essentially, the role of QT is to induce a measure “over tasks”
q(x, y | T ). This can be thought of as having an (uncountably) infinite number of tasks. Of course,
in practice this is impossible, but we will make this assumption nonetheless.

With this formulation in mind, the observables are “a distribution over tasks” specified by both
QT and q(x, y | T ) and a finite dataset Dnew from (8.15), i.e.

O := (QT , q(x, y | T ), Dnew) . (8.20)

Decision rule δ. The decision rule we propose is given by

δα,β(O) := (f̂α, Ŵ α,β
new ) , (8.21)

where Ŵ α,β
new := arg max

∥Ŵ ∥2,0≤β

1
n

n∑
i=1

log p(yi; Ŵ f̂α(xi)) (8.22)

and f̂α is the solution to problem (8.19). This decision rule can be understood as a two-step
procedure. First, a representation f̂α is learned via (sparse) multi-task learning (Problem (8.19))
and, secondly, a task-specific predictor Ŵ α,β

new is learned given only a small number of labelled
samples from the unseen test distribution p(x, y | Wnew). The hyperparameters α and β control
the sparsity levels of the first and second learning stage, respectively. Note that α = ∞ = β

corresponds to the case without any sparsity regularization.

The 3 steps to generalization. We spell out the three steps leading to improved sample complexity
on the downstream few-shot task:

• Step 1: Choose assumptions. We assume that the set of supervised prediction tasks of
interests can be solved using a common representation f(x) where each task requires only a
sparse subset of the features to be solved with a linear predictor. This assumption is formally
encoded by the fact that PW puts nonzero probability on sparse matrices and the fact that
Wnew is assumed sparse.

4Assumption 6.6 requiresW to be uncountable and, since ϕ is a bijection, so is ϕ(W).
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f̂α disentangled?
Ŵ α,β

new has zero
approximation error?

(no bias?)

Ŵ α,β
new has lower

estimation error?
(low variance?)

α =∞ β =∞ No Yes No
α =∞ β = ∥Wnew∥2,0 No No Yes
α = EPW

∥W ∥2,0 β =∞ Yes Yes No
α = EPW

∥W ∥2,0 β = ∥Wnew∥2,0 Yes Yes Yes

Table 8.2. I summarize all four possibilities for the sparsity regularization parameters α and β.
For each possibility, I describe whether the learned representation f̂α is disentangled and whether
Ŵ α,β

new is unbiased and has lower variance (i.e. better sample complexity). First, as Theorem 8.1
shows, having α = EPW

∥W ∥2,0, guarantees disentanglement (under some assumptions). Adding
sparsity regularization when estimatingWnew always lowers variance (assumingWnew is sparse),
but biases the estimator when f̂α is not disentangled. Having the right amount of regularization for
both stages of the decision rule yields the best of both worlds: no biased and an improved sample
complexity. See Chapter 6 for more details.

• Step 2: Prove identifiability. Under suitable assumptions, Theorem 8.1 establishes that
adding the proper amount of regularization, specifically setting α := EPW

∥W ∥2,0, will
force the learned representation f̂α to be disentangled.
• Step 3: Prove generalization. Chapter 6 also argues that adding the proper level of sparsity

regularization in the second learning stage, by setting β := ∥Wnew∥2,0, will lead to improved
estimation error (lower variance) without introducing any approximation error (no bias), as
long as the representation learned in the first stage, f̂α, is disentangled. All four combina-
tions of regularization are listed in Table 8.2 with the resulting effect on disentanglement, the
approximation error of Ŵ α,β

new and whether its estimation error is reduced (lower variance).
The case where both types of regularization are active is a win-win situation: We have
lower estimation error without approximation error. The table reflect ideal values for the
hyperparameters, which, in practice are not known by the learner. While the selection of β
could be addressed via standard cross-validation on Dnew, the selection of α is less obvious.
See Duan et al. [2020] for an unsupervised strategy to perform hyperparameter selection for
disentanglement.

8.2.4. Semi-supervised learning via clustering

I now discuss the problem of semi-supervised learning [Chapelle et al., 2006] through the lens of
statistical decision theory. I will concentrate on strategies based on clustering and how identifiability
is absolutely crucial for these methods to work.

Problem setting and “state of the world” θ. Semi-supervised learning refers to methods that
leverage unlabeled data in order to improve prediction. More formally, it is assumed that the learner
observes a very large dataset of unlabeled inputs Dunlab ⊆ X and a smaller dataset of labelled inputs
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Dlab ⊆ X × Y , where X and Y are the input and label spaces, respectively. It is assumed that
Dlab is sampled from some ground-truth distribution p(x, y) (i.i.d.) and Dunlab is sampled from the
marginal p(x) (i.i.d.). The hope is that the large dataset of unlabeled inputs Dunlab can be used to
have a better predictor. To simplify our discussion, we will assume that the learner observes p(x)
directly (infinite data regime) but only gets a finite dataset of labelled samples:

Dlab := ((xi, yi))n
i=1 ∼

n∏
i=1

p(xi, yi) . (8.23)

We will make further assumption about the data-generating process. We assume there exists a
hidden categorical variable z ∈ {1, ..., k} such that

p(x, y, z) = p(x | z)p(z)p(y | z) , (8.24)

so that p(x, y) =
∑k

z=1 p(x | z)p(z)p(y | z). This factorization corresponds to the graphical model
x← z → y. Intuitively, this factorization implies that all information about x relevant to predict y
is completely mediated by the categorical variable z. In this setting, the marginal distribution p(x)
is a mixture of k components p(x | z) for z ∈ {1, ..., k}. If the conditional p(y | z) is close to being
deterministic, this model can be seen as an instantiation of the cluster assumption in semi-supervised
learning which states that observations belonging to the same cluster are likely to have the same

label [Chapelle et al., 2006]. This data-generating-process suggests using a clustering algorithm to
cluster the large unlabeled dataset and use the cluster identities to predict y more easily.

In sum, the state of the world θ is given by

θ := (p(x | z), p(z), p(y | z)) . (8.25)

Loss function ℓ(θ,a). The end goal in semi-supervised learning is simply to find a predictor to
predict y from x. One way to achieve this is to estimate p(y | x). So we choose our loss to be

ℓ(θ, p̂y|x) := −Ep(x)DKL(p(y | x) ∥ p̂y|x(y | x)) , (8.26)

which reaches its minimal value when p̂y|x(y | x) = p(y | x) (almost) everywhere.5 Note that, in
a classification setting, one could also consider a loss ℓ that measures the accuracy of a classifier
h : X → Y , hence removing the need to estimate p(y | x). However, the point we want to make do
not require this extra complication, so we stick with (8.26).

Observables O. As already discussed, the learner has access to the following observables:

O := (p(x), Dlab) . (8.27)

5Notice the abuse of notation in (8.26) where we are using conditional densities inside the KL divergence, where actual
probability measures should be used. I believe the meaning is clear from context.
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We assume p(x) is fully known, although in practice only a finite dataset of unlabeled inputs x is
given. We still model the fact that the number of labelled samples is finite with the dataset Dlab.

The discriminative decision rule δdisc. We start by giving a very simple decision rule as baseline
which does not even leverage the knowledge of p(x), namely conditional maximum likelihood

estimation on the labelled dataset Dlab:

δdisc(O) := arg max
p̂y|x∈Py|x

1
n

n∑
i=1

log p̂y|x(yi | xi) , (8.28)

where Py|x is some hypothesis class of conditional densities p̂y|x. We consider this rule to be
discriminative as opposed to generative since it only learns p(y | x) and not the whole joint p(y,x),
as the next clustering-based rule does.

The clustering-based decision rule δclus. The second decision rule we consider is based on a
clustering of p(x). We will essentially learn all pieces of the data-generating process, namely p(z),
p(x | z) and p(y | z). We will provide some examples of identifiable clustering models later on.
The key idea is that, if p(z) and p(x | z) are identifiable from the marginal p(x), then, the only
piece of the model that requires labelled samples to be estimated is p(y | z). Importantly, the space
of possible p(y | z) is typically less “complex" than the space of possible p(y | x), which means we
can obtain better sample complexity for the clustering approach.

The clustering-based rule starts by performing clustering. Here we consider a MLE-based
clustering strategy:

(p̂z, p̂x|z) ∈ arg max
p̂z∈∆k,p̂x|z∈Px|z

Ep(x) log
∑k

z=1
p̂x|z(x | z)p̂z(z)︸ ︷︷ ︸

p̂(x):=

, (8.29)

where ∆k is the (k − 1)-dimensional simplex and Px|z is some hypothesis class for the components
of the mixture. Note that if the hypothesis class of the components Px|z is expressive enough to
contain the ground-truth components p(x | z) and if Px|z is restricted enough to be identifiable,
then (8.29) is guaranteed to recover the exact components, up to permutation. I give a more explicit
definition of identifiability for such clustering models below:

Definition 8.1. We say that a clustering model Px|z is identifiable when

For all (p̃x|z, p̃z), (p̄x|z, p̄z) ∈ Px|z ×∆k, p̃(x) = p̄(x) =⇒ (p̃x|z, p̃z) ∼clus (p̄x|z, p̄z) ,

where “∼clus” means that there exists a permutation π : [k]→ [k] such that

p̄(x | z) = p̃(x | π(z)) and p̄(z) = p̃(π(z)) .
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The converse statement is always true: if two models are ∼clus-equivalent, then their respective
marginal over x must be equal since

p̄(x) =
∑k

z=1
p̄x|z(x | z)p̄z(z) =

∑k

z=1
p̃x|z(x | π(z))p̃z(π(z)) = p̃(x) ,

where the last equality holds because the permutation simply permutes the terms of the sum.
We further compute the posterior of the fitted model of (8.29):

p̂(z | x) :=
p̂x|z(x | z)p̂z(z)

p̂(x) . (8.30)

Again assuming the model Px|z is identifiable and sufficiently expressive to contain the ground-truth
p(x | z), we can easily show that p̂(x) = p(x) and that p̂(z | x) = p(π(z) | x), i.e. the marginal
and posterior of the learned and ground-truth models match (up to permutation).

The second stage of the clustering-based rule consists in estimating p(y | z) using the labelled
samples in Dlab:

p̂y|z ∈ arg max
p̂y|z∈Py|z

1
n

n∑
i=1

log
k∑

z=1

p̂y|z(yi | z)p̂(z | xi) , (8.31)

where Py|z is some hypothesis class for the conditional p̂y|z. Finally, the clustering-based decision
rule is given by

δclus(O) := p̂y|x (8.32)

where p̂y|x(y | x) :=
k∑

z=1

p̂y|z(y | z)p̂(z | x) . (8.33)

The 3 steps to generalizations. We now show how the three steps of Figure 8.1 applies to this
setting to show that the clustering-based approach δclus has a better bias-variance trade-off than
δdisc, assuming the clustering is identifiable. Note that Castelli and Cover [1995] made a similar
point assuming identifiability of Px|z and provided a rigorous sample-complexity analysis of the
approach.

• Step 1: Choose assumptions. This is the clustering assumption. We assumed that the
relationship between x and y is mediated by a discrete variable z. More precisely, we
assume that p(y | x) =

∑
z p(y | z)p(z | x).

• Step 2: Prove identifiability. We choose a clustering model Px|z which contains the ground-
truth and is identifiable. There are many identifiability results for clustering in the literature.
For example, Teicher [1963] showed that the Gaussian mixture model (where p(x | z) is
Gaussian for all z) is identifiable. The result was further generalized to any exponential
family by Barndorff-Nielsen [1965]. Other models include mixtures of product measures
(when p(x | z) =

∏dx

i=1 p(xi | z)) [Teicher, 1967] and symmetric components [Hunter
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et al., 2007]. Identifiability can also be obtained for the nonparametric case by assuming
separation condition [Aragam et al., 2018] or by assuming a Markov chain over the cluster
index z [Gassiat et al., 2016]. The reader is referred to Aragam et al. [2018] for a more
comprehensive review.
• Step 3: Prove generalization. I now argue that the clustering-based rule δclus has a better

bias-variance trade-off than δdisc.
The clustering-based rule δclus has lower estimation error (variance). The variance of δclus

should be lower than that of δdisc because the hypothesis class Py|x, used for δdisc, is typically
much more “complex” than Py|z, used for δclus. Intuitively, this is the case because x lives
typically in a high-dimensional Euclidean space while z only takes finitely many values and
thus the space functions mapping x to a distribution over y is more complex than the space
of functions mapping z to a distribution over y. I illustrate this point in Figure 8.2.
The clustering-based rule δclus has zero approximation error (no bias). More precisely, if
Px|z is identifiable up to permutation and Py|z contains the ground-truth p(y | π(z)) for all
permutations π, then δclus is unbiased because

p̂y|x(y | x) =
k∑

z=1

p̂y|z(y | z)p̂(z | x) (8.34)

=
k∑

z=1

p̂y|z(y | z)p(π(z) | x) (8.35)

=
k∑

z=1

py|z(y | π(z))p(π(z) | x) = p(y | x) , (8.36)

where the second equality holds because Px|z is identifiable and the third equality holds
when taking p̂y|z(y | z) := py|z(y | π(z)), which we are allowed to do because we assumed
py|z(y | π(z)) ∈ Py|z.

What can go wrong without identifiability? We answer this question with an example showing
that the identifiability of Px|z is absolutely crucial to ensure that the rule δclus has zero approximation
error (no bias).

Example 8.1 (Unidentifiable clustering can bias δclus). Assume that x ∈ R2, y, z ∈ {0, 1}. Further-

more, assume that the ground-truth components p(x | z = 0) and p(x | z = 1) are given by the

blue and red clusters of data represented in Figure 8.3. Furthermore, we assume that y = z in the

data-generating process, which of course implies that p(y = 1 | x) = 1(x1 ≥ 0).
Now, if the hypothesis class of components Px|z is too expressive (and thus unidentifiable), it

is possible that the first clustering stage of δclus yields components p̂(x | z = 0) and p̂(x | z = 1)
that differ from the ground-truth ones. Figure 8.3 shows such a situation, where the estimated

components p̂(x | z = 0) and p̂(x | z = 1) are depicted in green and orange, respectively. Note
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…

Figure 8.2. Illustrating the fact that Py|x, used in δdisc, is typically much more complex than Py|z,
used in δclus. In this example, we assume x ∈ R2, z ∈ {1, 2, 3} and y ∈ {0, 1}. We show decision
boundaries for both p(y | x) and p(y | z), assuming a threshold of 0.5. Note that we can depict all
possible decision boundaries for p(y | z) (there are only 23 possibilities) while this is impossible for
p(y | x). This observation suggests that δclus will require less samples to perform well.

that, although the clustering is wrong, the marginal distribution over x is correctly modelled, i.e.

p̂(x) = p(x). In this case, the posterior of the model is given by p̂(z = 1 | x) = 1(x2 ≥ 0). We

can thus compute

p̂(y = 1 | x) = p̂(y = 1 | z = 0)1(x2 < 0) + p̂(y = 1 | z = 1)1(x2 ≥ 0) .

It is clear from the above equation that no choice of p̂(y = 1 | z) will allow p̂(y = 1 | x) to exactly

match p(y = 1 | x) = 1(x1 ≥ 0) for all x. Thus, δclus has a nonzero approximation error, i.e. it is

biased.

Remark 8.1. If we were to modify δclus so as to train jointly both the clustering model p̂(x | z) on

p(x) and the predictor p̂(y | z) on Dlab, a solution like the one above would be unlikely since it

would yield poor performance on Dlab, which would mean the training loss is not minimal.

Connections to representation learning. The conditionals p̂(z | x) and p̂(y | z) are analogous
to the representation f̂(x) and the predictor Ŵ from the previous section, respectively. The
motivations are also similar, the representation (p̂(z | x) or f̂(x)) is identified using a large dataset
while the remaining predictor (p̂(y | z) or Ŵ ) is learned using a smaller dataset. In both cases, the
predictor is much less complex that the whole conditional p(y | x), which yields benefits in terms
of estimation error (lower variance) when learned on smaller datasets.

350



Figure 8.3. Illustration for Example 8.1 showing how an unidentifiable clustering model can bias
δclus. The red and blue clusters correspond to the ground-truth components p(x | z = 0) and
p(x | z = 1), while the region delineated in orange and green correspond to the learned components
p̂(x | z = 0) and p̂(x | z = 1). The latter clustering is valid in the sense that it yields the correct
distribution over observations, i.e. p̂(x) = p(x), however, it yields a biased δclus, as explained in
Example 8.1.
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Chapter 9

Conclusions, Discussions, and Perspectives

This thesis has focused on causal discovery (Chapters 3 & 4), identifiable representation learn-
ing (Chapters 5, 6 & 7) and has argued that identifiability analyses are important tools to study the
interpretability of models as well as their generalization properties (Chapter 8). In this chapter, we
summarize why studying identifiability is important for machine learning (Section 9.1) and discuss
future research directions (Section 9.2).

9.1. Why study identifiability?

Scientific understanding. Causal discovery is about automating the scientific process of discov-
ering novel causal relationships. An identifiability guarantee improves trust in the validity of the
relationships the model has uncover, conditionally on the assumptions being reasonable and/or
testable. For example, biologists are interested in understanding how various genes interact with
each other [Lopez et al., 2022]. Latent variable models can also be useful to create a lower di-
mensional representations of gene perturbations [Lopez et al., 2023]. This is related to the realist
interpretation of identifiability discussed in Section 8.1.

Learning interpretable models. A common criticism of deep learning models is that they are black-
boxes, i.e. understanding their decision process is difficult. Identifiability can be seen as a necessary
condition to make sure a model is interpretable since, without it, multiple reruns of the same
algorithm with different initializations will yield different models with different interpretations. This
is related to both the “independent-learners interpretation” and the “interpretability interpretation”
of identifiability in Section 8.1.

Understanding the behavior of existing algorithms. In Chapter 7 on additive decoders, we
provided an identifiability analysis with the goal of shedding light on object-centric representation
learning approaches. Why are these methods performing segmentation without any segmentation
labels? Although additive decoders are a simplification of the decoders actually used in practice, I



believe a similar style of analysis might provide an answer for more expressive models, probably
with more advanced mathematics. The work of Von Kügelgen et al. [2021] is another example
where an identifiability analysis is used to gain insight into known algorithms, which in that case
are self-supervised learning methods.

Generalization/extrapolation. Chapter 8 showed four different problem settings where identifi-
ability plays a key role in obtaining performance guarantees on some downstream tasks, namely
causal discovery (Chapters 3 & 4), sparse multitask learning (Chapter 6), additive decoders for
extrapolation (Chapter 7), and semi-supervised learning via clustering (Section 8.2.4). A three-step
framework was shown to be common to all four settings: (i) Choose assumptions suitable for the
problem at hand postulating that some unknown structure is present in the data, (ii) show that this
structure can be recovered from data via an identifiability analysis, and (iii) leverage the learned
structure to provide generalization guarantees on the downstream task. Importantly, the last step
relies on correctly recovering the structure in the data, which is where identifiability is useful.

9.2. Future research directions
I now briefly describe future research directions either to refine our identifiability analysis or to

use identifiability to answer open questions in machine learning.

Finite-sample identifiability analysis. Identifiability, by definition, says nothing about the finite
data case. Can we prove some kind of consistency for models that are identifiable only up to
some equivalence class? The difficulty stems from the fact that the estimated parameter is in
fact an equivalence class of parameters and thus one can only hope to obtain convergence to an
equivalence class. How can we formalize convergence in such a setting? Datta and Chakrabarty
[2023] showed consistency of probabilistic principal component analysis, which is identifiable only
up to some equivalence relation. The key is to consider convergence in some Euclidean quotient
space induced by the equivalence relation. Can this sort of approach be extended to more flexible
nonlinear latent variable models such as the ones considered in this thesis? What can be said about
sample complexity? One could also leverage the fact that deep learning models often operate in the
interpolation regime, i.e. the loss is equal to zero for every single data point of the training set. If
two models interpolate the data, can we say that their parameters/representations are related via
a simple function? If so, does the finite dataset have to satisfy some kind of sufficient variability
condition analogous to those of Chapters 5, 6 & 7?

Identifiability analysis with model mispecification. What happens when the fitted model is
mispecified in the sense that it cannot express the ground-truth distribution of observations exactly?
This question is orthogonal to the question of finite-sample analysis, but as important. Referring to
the realist interpretation of Section 8.1, identifiability guarantees assume that the learned model
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is expressive enough to represent the data-generating process. What happens when this is not
the case? Even defining what we mean by identifiability and discovering structure is difficult
in this setting. One would still have to postulate an hypothesis class for the ground-truth model
together with a ground-truth representation. For instance, what happens if one performs linear
ICA, which assumes the latent factors are statistically independent, on data where the factors are
mildly correlated? Proving meaningful theoretical guarantees in such a settings appears to be
challenging. Could we still say something meaningful even when the data-generating process has
no ground-truth representation? One possible angle could be to sidestep identifiability altogether
and analyse generalization/extrapolation directly, since this is often the ultimate goal. Nevertheless,
one would still need to assume some structure is present in the data and that somehow the learning
algorithm leverages it in order to improve performance on downstream tasks. Instead of going for
model mispecification, another direction would simply be to progressively move towards more and
more expressive hypothesis class, in the hope that this additional capacity will be enough to avoid
model mispecification altogether.

Explaining puzzling observations in deep learning. The literature on deep learning is filled with
surprising observations begging for explanations. Examples include the surprising generalization
abilities of neural networks [Zhang et al., 2017], the double descent phenomenon [Belkin et al.,
2019], linear mode connectivity of neural networks [Garipov et al., 2018, Entezari et al., 2022,
Ainsworth et al., 2023], the phenomenon known as grokking [Power et al., 2022], the emergence
of interpretable and generalizable algorithms in some neural networks (mechanistic interpretabil-
ity) [Olah et al., 2020, Elhage et al., 2022] and the surprising creativity of modern generative
models [Ramesh et al., 2022]. I believe identifiability can bring insights into some of these puzzles.

• The linear mode connectivity of neural networks refers to the observation that, when
two neural networks are trained via stochastic gradient descent, the parameters lying on
the line λθ1 + (1 − λ)θ0 joining the parameters of both models θ0 and θ1 have as low a
loss as θ0 and θ1, when adjusting for the permutation invariance of neural networks. Could
this observation be explained by the fact that the equivalence class of parameters fitting the
data exactly is convex (modulo the permutation indeterminacy)? A better understanding of
parameter identifiability in neural networks could answer this question.
• The field of mechanistic interpretability aims at discovering interpretable algorithms

encoded in the weights of trained neural networks. The precise reason why these algorithms
“emerge” is still open (see Morwani et al. [2024] for first steps answering this question). I
hypothesize that, in many cases, identifiability can bring insights into this question: Suppose
a task is specified by a ground-truth neural network fθ which implements some specific
algorithms in its weights θ to associate each problem instance x ∈ X to a correct output
y = fθ(x). Assume that the same neural network architecture with parameter θ̂ is fitted
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to each instance so that fθ(x) = fθ̂(x) for all x ∈ X . Can we prove that θ̂ implements
the same interpretable algorithm as θ, up to irrelevant indeterminacies? This also relates
to generalization and extrapolation: If fθ(x) = fθ̂(x) but only for all x in some subset
X train ⊆ X , can we show that X train is enough to discover the right algorithm that generalizes
to X ? Can we find meaningful conditions on fθ and X train such that fθ(x) = fθ̂(x) for all
x ∈ X train implies fθ(x) = fθ̂(x) for all x ∈ X ?
• The creativity of modern generative models such as DALLE-2 is mind-boggling. It appears

that these model can indeed be creative in that they can recombine known concepts in novel
ways, although it is difficult to know for sure due to the immensity of the datasets these
models are trained on. But why is this happening? I conjecture that standard generalization
theory in machine learning is not enough to account for this kind of out-of-support generation.
Chapter 7 demonstrated that identifiability analyses can shed light on extrapolation ability of
additive decoders, which are very limited of course. Could this type of analysis be applied
to modern generative models?
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